

Learning	Node.js	for	.NET	Developers

Table	of	Contents

Learning	Node.js	for	.NET	Developers
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Why	Node.js?
What	is	Node.js?

Understanding	the	Node.js	execution	model
Non-blocking
Event-driven
Single-threaded

Introducing	the	Node.js	ecosystem
Why	JavaScript?

A	clear	canvas
Functional	nature
A	bright	future

When	to	use	Node.js
Writing	web	applications
Identifying	other	use	cases
Why	now?

Summary
2.	Getting	Started	with	Node.js

Installing	and	running	Node.js
Choosing	an	editor
Using	an	application	framework

Getting	started	with	Express
Exploring	our	Express	application

Understanding	Express	routes	and	views
Using	nodemon	for	automatic	restarts
Creating	modular	applications	with	Express
Bootstrapping	an	Express	application
Understanding	Express	middleware

Implementing	error	handling
Using	Express	middleware

Summary
3.	A	JavaScript	Primer

Introducing	JavaScript	types
JavaScript	primitive	types

Functional	object-oriented	programming
Functional	programming	in	JavaScript
Understanding	scopes	in	JavaScript

Strict	mode
Object-oriented	programming	in	JavaScript

Programming	without	classes
Creating	objects	with	the	new	keyword

Programming	with	classes
Class-based	inheritance

Summary
4.	Introducing	Node.js	Modules

Organizing	your	codebase
JavaScript	module	systems

Creating	modules	in	Node.js
Declaring	a	module	with	a	name	and	its	own	scope
Defining	functionality	provided	by	the	module
Importing	a	module	into	another	script

Defining	a	directory-level	module
Implementing	an	Express	middleware	module
Summary

5.	Creating	Dynamic	Websites
Handling	user-submitted	data
Communicating	via	Ajax
Implementing	other	data	operations

Listing	data	in	views
Issuing	a	delete	request	from	the	client
Splitting	up	Express	views	using	partials

Summary
6.	Testing	Node.js	Applications

Writing	a	simple	test	in	Node.js
Structuring	the	codebase	for	tests
Writing	BDD-style	tests	with	Mocha

Resetting	state	between	tests

Using	Chai	for	assertions
Creating	test	doubles

Creating	test	doubles	using	Sinon.JS
Testing	an	Express	application

Simplifying	tests	using	SuperAgent
Full-stack	testing	with	PhantomJS
Summary

7.	Setting	up	an	Automated	Build
Setting	up	an	integration	server

Setting	up	a	public	GitHub	repository
Building	a	project	on	Travis	CI

Automating	the	build	process	with	Gulp
Running	tests	using	Gulp

Checking	code	style	with	ESLint
Automatically	fixing	issues	in	ESLint
Running	ESLint	from	Gulp

Gathering	code	coverage	statistics
Running	integration	tests	from	Gulp
Summary

8.	Mastering	Asynchronicity
Using	the	callback	pattern	for	asynchronous	code

Exposing	the	callback	pattern
Consuming	asynchronous	interfaces

Writing	cleaner	asynchronous	code	using	promises
Implementing	promise-based	asynchronous	code

Consuming	the	promise	pattern
Parallelising	operations	using	promises

Combining	asynchronous	programming	patterns
Summary

9.	Persisting	Data
Introducing	MongoDB

Why	choose	MongoDB?
Object	modeling
JavaScript
Scalability

Getting	started	with	MongoDB
Using	the	MongoDB	shell

Using	MongoDB	with	Express
Persisting	objects	with	Mongoose
Isolating	persistence	code
Dependency	injection	in	Node.js
Providing	dependencies
Running	database	integration	tests	on	Travis	CI

Introducing	Redis

Why	use	Redis?
Installing	Redis
Using	Redis	as	a	key-value	store
Storing	structured	data	in	Redis

Building	a	user	ranking	system	with	Redis
Using	Redis	from	Node.js

Testing	with	redis-js
Implementing	user	rankings	with	Redis
Making	use	of	the	users	service

A	note	on	security
Summary

10.	Creating	Real-time	Web	Apps
Understanding	options	for	real-time	communication
Introducing	Socket.IO

Implementing	a	chat	room	with	Socket.IO
Scaling	real-time	Node.js	applications

Using	Redis	as	a	backend
Integrating	Socket.IO	with	Express
Directing	Socket.IO	messages
Testing	Socket.IO	applications
Organizing	Socket.IO	applications

Exposing	real-time	updates	to	the	model
Organizing	Socket.IO	applications	using	namespaces
Partitioning	Socket.IO	clients	using	rooms

Summary
11.	Deploying	Node.js	Applications

Working	with	Heroku
Setting	up	a	Heroku	account	and	tooling
Running	an	application	locally	with	Heroku
Deploying	an	application	to	Heroku
Working	with	Heroku	logs,	config,	and	services

Setting	up	MongoDB
Setting	up	Redis

Deploying	from	Travis	CI
Setting	encrypted	Travis	CI	environment	variables

Installing	Ruby
Creating	an	encrypted	environment	variable

Further	resources
Summary

12.	Authentication	in	Node.js
Introducing	Passport

Choosing	an	authentication	strategy
Understanding	third-party	authentication

Using	Express	sessions

Specifying	a	session	secret
Deciding	when	the	session	gets	saved
Using	alternative	session	stores
Using	session	middleware

Implementing	social	login
Setting	up	a	Twitter	application
Configuring	Passport
Persisting	user	data	with	Redis
Configuring	Passport	with	persistence
Hiding	functionality	from	unauthenticated	users
Integration	testing	with	Passport

Allowing	users	to	log	out
Adding	other	login	providers
Summary

13.	Creating	JavaScript	Packages
Writing	universal	modules

Comparing	Node.js	and	RequireJS
Supporting	the	browser	environment
Using	AMD	modules	with	RequireJS
Isomorphic	JavaScript

Writing	npm	packages
Defining	an	npm	package

Publishing	a	package	to	npm
Running	automated	clients	on	the	web
Releasing	a	standalone	tool	to	npm

Using	Node.js	modules	in	the	browser
Controlling	Browserify's	output

Summary
14.	Node.js	and	Beyond

Understanding	Node.js	versioning
A	brief	history	of	Node.js
Introducing	the	Node.js	LTS	schedule

Understanding	ECMAScript	versioning
Exploring	ECMAScript	2015

Understanding	ES2015	modules
Using	syntax	improvements	from	ES2015

The	for...	of	loop
The	spread	operator	and	rest	parameters
Destructuring	assignment

Introducing	generators
Introducing	ECMAScript	2016
Going	beyond	JavaScript

Exploring	compile-to-JavaScript	languages
TypeScript

CoffeeScript
And	beyond...

Introducing	a	true	assembly	language	for	the	web
Understanding	asm.js
Understanding	WebAssembly

JavaScript	and	ASP.NET
Exploring	.NET	Core

Defining	project	structure	in	.NET	Core
Managing	dependencies	in	.NET	Core
Building	web	applications	in	ASP.NET	Core

Integration	with	JavaScript
Server-side	JavaScript	integration	with	.NET

Summary
Index

Learning	Node.js	for	.NET	Developers

Learning	Node.js	for	.NET	Developers
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,
except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and
distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing
cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2016

Production	reference:	1170616

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-009-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Harry	Cummings

Reviewer

David	Simons

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Rahul	Nair

Content	Development	Editor

Trusha	Shriyan

Technical	Editor

Jayesh	Sonawane

Copy	Editor

Safis	Editing

Project	Coordinator

Kinjal	Bari

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Harry	Cummings	has	been	working	in	software	development	for	8	years,	and	for	the	past	few
years,	he	has	performed	the	role	of	technical	lead	across	a	variety	of	projects	for	varied	clients.
He	has,	in	the	past,	also	worked	as	a	developer,	project	manager,	and	consultant.	This	gives	him
an	excellent	all-round	view	of	the	role	of	a	technical	lead	and	its	relationship	with	other	roles	as
well	as	insight	into	every	stage	of	project	delivery,	from	initial	analysis	to	long-term	maintenance.

Harry	has	extensive	experience	in	C#/.NET,	Java	and	Scala,	and	JavaScript/Node.js.	He
continues	to	work	directly	with	these	technologies	on	a	regular	basis	in	the	teams	that	he	leads.
His	broader	interests	and	expertise	lie	in	sharing	and	nurturing	software	development	best
practices	through	training	and	mentoring.	He	has	appeared	at	conferences	such	as	NDC	London
and	SDD	Conf,	speaking	about	diverse	topics,	ranging	from	introductory	Node.js	through	to
automated	test	strategies	and	long-term	project	maintainability.

About	the	Reviewer
David	Simons	is	a	London-based	software	consultant.	He	is	familiar	with	a	wide	range	of	tools,
having	helped	clients	such	as	the	BBC	and	News	International	deliver	web	solutions	in	a	range	of
languages,	including	.NET,	Java,	and	full-stack	JavaScript.	He	shares	his	insights	around	these
and	his	background	in	statistics	research	at	a	range	of	conferences,	including	NDC	and	JSConf.

As	of	2016,	he	works	with	London-based	consultancy	GraphAware	to	advocate	and	consult	on	the
use	of	graph	databases	in	modern	applications.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book
customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
The	purpose	of	this	book	is	to	help	.NET	or	Java	developers	make	the	leap	to	Node.js.	You	may
have	some	web	development	experience,	and	perhaps	you've	written	some	browser-based
JavaScript	in	the	past.	It	might	not	be	obvious	why	anyone	would	want	to	take	JavaScript	out	of
the	browser	and	use	it	for	server-side	development.	However,	this	is	exactly	what	Node.js	does.
What's	more,	Node.js	has	been	around	for	long	enough	now	to	have	matured	as	a	platform,	and
has	sustained	its	impressive	growth	in	popularity	well	beyond	any	period	that	could	be	attributed
to	initial	hype	over	a	new	technology.

The	first	objective	of	this	book	then	is	to	explain	why	Node.js	is	a	compelling	technology	that's
worth	learning	more	about.	The	first	few	chapters	introduce	Node.js	with	this	in	mind,	quickly	get
you	up	and	running	with	Node.js,	and	provide	an	important	(re)	introduction	to	the	JavaScript
language	to	set	you	on	the	right	track.

The	main	part	of	this	book	will	then	take	you	through	a	worked	example	of	building	up	a	Node.js
web-application	step	by	step.	In	the	process,	we'll	illustrate	all	the	important	tools	and	techniques
required	for	real-world	development	projects	in	Node.js.	The	aim	is	to	make	the	most	of	your
existing	development	expertise	to	allow	you	to	quickly	reach	the	same	level	of	best	practices	and
professionalism	with	Node.js.

The	final	chapters	of	the	book	show	how	to	use	Node.js	for	other	purposes	outside	of	web
applications	and	how	to	continue	learning	Node.js	and	exploring	the	ecosystem	around	it.	We'll
also	see	how	you	can	use	Node.js	alongside	.NET	and	benefit	from	applying	your	programming
skills	across	both	technologies.

What	this	book	covers
Chapter	1,	Why	Node.js?,	introduces	Node.js	as	a	programming	platform.	It	covers	the	execution
model	of	Node.js,	particularly	how	it	differs	from	.NET	and	Java,	and	the	use	cases	in	which
these	differences	become	strengths.	This	chapter	also	discusses	the	suitability	of	JavaScript	as	a
development	language.

Chapter	2,	Getting	Started	with	Node.js,	dives	straight	into	creating	a	Node.js	application.	In	this
chapter,	you	will	install	Node.js,	choose	a	code	editor,	and	set	up	a	minimal	web	application
project.	You'll	also	learn	some	important	command-line	tools	for	working	with	Node.js.

Chapter	3,	A	JavaScript	Primer,	introduces	the	most	important	things	to	know	when	programming
in	JavaScript.	It	describes	the	JavaScript	type	system	and	its	particular	flavor	of	functional
object-oriented	programming,	including	prototype-based	inheritance.	This	chapter	also	covers	a
few	key	gotchas	and	JavaScript	language	quirks.

Chapter	4,	Introducing	Node.js	Modules,	explains	how	to	structure	JavaScript	applications	using
modules.	It	introduces	the	Node.js	module	system	and	shows	you	how	to	use	this	to	organise	your
application's	code.

Chapter	5,	Creating	Dynamic	Websites,	expands	on	the	examples	from	the	previous	chapter	to
build	a	functioning	web	application.	You'll	add	a	JSON	API	and	dynamic	views	to	your
application	and	communicate	between	the	client	and	server	using	Ajax.

Chapter	6,	Testing	Node.js	Applications,	shows	you	how	to	write	automated	tests	in	JavaScript
and	Node.js.	It	introduces	a	number	of	tools	and	libraries	for	writing	and	running	tests	in
JavaScript,	and	guides	you	through	writing	a	variety	of	unit	tests	and	integration	tests	for	your
application.

Chapter	7,	Setting	up	an	Automated	Build,	covers	build	automation	and	continuous	integration	in
Node.js.	You'll	set	up	a	CI	server	and	task	runner	for	your	application,	adding	automated	tasks	to
run	tests,	execute	static	analysis,	and	assess	code	coverage.

Chapter	8,	Mastering	Asynchronicity,	introduces	different	patterns	for	asynchronous
programming	in	JavaScript.	You'll	apply	these	to	your	own	application	and	make	the	most	of
JavaScript	language	features	and	libraries	for	simplifying	asynchronous	code.

Chapter	9,	Persisting	Data,	explains	persistent	data	stores	that	can	be	used	with	Node.js.	It
introduces	MongoDB	and	Redis,	explaining	their	different	data	models	and	their	use	cases.	You'll
integrate	both	of	these	data	stores	with	your	Node.js	application.

Chapter	10,	Creating	Real-time	Web	Apps,	shows	how	to	implement	real-time	two-way
communication	between	the	client	and	the	server.	You'll	use	the	Socket.IO	library	to	add	real-time
functionality	into	your	application.	You'll	also	see	how	to	write	tests	for	this	functionality	and

how	to	write	scalable	real-time	applications	using	Redis	as	a	backend.

Chapter	11,	Deploying	Node.js	Applications,	demonstrates	how	to	get	a	Node.js	application	onto
the	Web.	You'll	deploy	your	application	to	a	free	cloud-hosting	provider.	You'll	see	how	to
configure	data	stores	and	how	to	use	remote	server	logs	for	debugging.

Chapter	12,	Authentication	in	Node.js,	covers	authentication	for	Node.js	web	applications.
You'll	implement	authentication	using	third-party	providers,	integrate	this	with	your	application,
and	show	different	content	to	logged-in	and	logged-out	users.

Chapter	13,	Creating	JavaScript	Packages,	explains	how	to	create	standalone	JavaScript
packages	for	use	by	others.	You'll	see	how	to	write	universal	JavaScript	libraries	that	can	run	on
both	the	client	and	the	server,	and	how	to	write	a	standalone	command-line	application	using
Node.js.

Chapter	14,	Node.js	and	Beyond,	puts	the	content	of	this	book	in	a	wider	context.	It	explains	how
Node.js	and	JavaScript	are	continuing	to	evolve,	so	you	can	be	prepared	for	and	take	advantage
of	upcoming	changes.	It	covers	some	alternative	programming	languages	for	Node.js	and	the	Web,
and	how	these	relate	to	JavaScript.	It	discusses	how	some	of	the	principles	from	Node.js	can	be
applied	to	.NET	programming,	and	illustrates	how	these	are	particularly	visible	in	.NET	Core
(the	new	version	of	.NET).	It	also	shows	how	you	can	use	Node.js	together	with	.NET	to	gain	the
best	of	both	worlds.

What	you	need	for	this	book
All	of	the	tools	and	services	used	in	this	book	are	available	for	free	online.	Most	of	the	worked
examples	require	an	active	web	connection	at	some	point.	To	get	started,	you	need	nothing	more
than	a	console,	a	web	browser,	and	permission	to	install	new	software	on	your	machine.	To
support	developers	coming	from	a	.NET	background,	some	of	the	console	listings	or	example
steps	in	this	book	use	Windows	conventions	(for	example,	backslashes	in	paths).	None	of	the
examples	depend	on	Windows	specifically	though.	You	can	work	through	this	book	on	Windows,
Mac	OSX,	or	Linux.

Who	this	book	is	for
This	book	is	for	.NET	or	Java	developers	who	are	interested	in	learning	Node.js.	No	prior
experience	with	Node.js	is	expected.	You	might	have	written	some	client-side	JavaScript	before,
but	this	is	not	required.	The	main	worked	example	in	this	book	is	a	Node.js	web	application.	Web
development	experience	in	.NET	or	Java	will	be	helpful,	but	it's	not	necessary	to	have	experience
with	any	particular	application	library	or	framework.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"ES2015	introduces	the	let
keyword	for	declaring	variables."

A	block	of	code	is	set	as	follows:

<!DOCTYPE	html>

<html>

		<head>

				<title>{{	title	}}</title>

				<link	rel='stylesheet'	href='/stylesheets/style.css'	/>

		</head>

		<body>

				<h1>{{	title	}}</h1>

				<p>Welcome	to	{{	title	}}</p>

		</body>

</html>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

/*	GET	home	page.	*/

router.get('/',	function(req,	res,	next)	{

		res.render('index',	{	title:	'Express',	name:	'World'	});

});

Any	command-line	input	or	output	is	written	as	follows:

>	npm	install	–g	nodemon

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Clicking	the	Next	button	moves
you	to	the	next	screen."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that
you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the	book's
title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing
to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get
the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from
https://github.com/NodeJsForDevelopers	and	also	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's	webpage
at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's	name	in	the
Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

https://github.com/NodeJsForDevelopers
http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can
download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/LearningNodejsForNETDevelopers_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/LearningNodejsForNETDevelopers_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If
you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list
of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support
and	enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the
Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,
we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal
copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Why	Node.js?
Node.js	is	still	relatively	new	compared	to	platforms	such	as	.NET	and	Java,	but	has	become
very	popular	in	a	short	time,	and	has	even	started	influencing	these	platforms.	This	is	thanks	to	its
distinctive	programming	model,	extensive	ecosystem,	and	powerful	tooling.

These	factors	make	Node.js	a	compelling	alternative	to	other	platforms.	They	can	also	make	it
intimidating.	Its	distinctive	programming	model	may	seem	quite	alien	compared	to	other
platforms.	The	sheer	range	of	available	libraries	and	tools	can	be	bewildering.

This	book	will	guide	you	through	Node.js	so	you	can	start	using	it	in	your	applications.	It	will
help	you	to	understand	Node.js,	navigate	its	ecosystem,	and	leverage	your	existing	development
skills	in	this	new	environment.

In	this	chapter,	we	will	cover	the	following	topics:

Introducing	the	Node.js	platform
Seeing	how	its	execution	model	works
Exploring	the	Node.js	ecosystem
Looking	at	JavaScript	as	a	language	choice
Considering	the	range	of	use	cases	for	Node.js

What	is	Node.js?
Node.js	consists	of	a	JavaScript	engine	together	with	low-level	APIs	for	core	server-side
functionality.	The	execution	engine	is	the	same	V8	engine	developed	for	the	Chrome	web
browser.	Node.js	takes	this	engine	and	embeds	it	in	a	standalone	application	that	can	run
JavaScript	outside	the	browser.

In	Node.js,	the	standard	APIs	found	in	browsers	to	support	client-side	web	development,	such	as
the	Document	Object	Model	(DOM)	and	XMLHttpRequest,	are	not	present.	Instead,	there	are
APIs	to	support	general-purpose	application	development.	These	core	APIs	cover	low-level
functionality	such	as	the	following:

Networking	and	security
Accessing	the	file	system
Defining	and	requiring	modules
Raising	and	consuming	events
Handling	binary	data	streams
Compression
UTF-8	support
Retrieving	basic	information	about	the	OS
Managing	child	processes

Some	of	these	APIs	may	already	be	familiar	from	developing	client-side	JavaScript.	For
example,	the	Timers	API	exposes	the	familiar	setTimeout	and	setInterval	functions.

Node.js	also	provides	several	tools	to	help	with	the	development	process.	These	include	console
logging,	debugging,	a	Read-Eval-Print	Loop	(REPL)	(or	interactive	console),	and	basic
assertions	for	testing.

Understanding	the	Node.js	execution	model
The	execution	model	of	Node.js	follows	that	of	JavaScript	in	the	browser.	It	is	quite	different
from	that	of	most	general-purpose	programming	platforms.

Stated	formally,	Node.js	has	a	single-threaded,	non-blocking,	event-driven	execution	model.	We
will	define	each	of	these	terms	in	this	section.

Non-blocking

Put	simply,	Node.js	recognizes	that	many	programmes	spend	most	of	their	time	waiting	for	other
things	to	happen,	for	example,	slow	I/O	operations	such	as	disk	access	and	network	requests.

Node.js	addresses	this	by	making	these	operations	non-blocking.	This	means	that	program
execution	can	continue	while	they	happen.	For	example,	the	filesystem	API's	stat	function	for
retrieving	statistics	about	a	file	may	be	called	as	follows:

fs.stat('/hello/world',	function	(error,	stats)	{

		console.log('File	last	updated	at:	'	+	stats.mtime);

});

Two	arguments	are	passed	to	the	fs.stat	function:	the	name	of	the	file	that	we	are	interested	in,
and	a	callback	function.	The	fs.stat	call	returns	immediately,	returning	control	of	execution	to
the	current	thread	but	not	returning	a	value.	If	there	are	further	commands	following	the	fs.stat
call,	these	will	then	be	executed.	Otherwise,	the	thread	is	released	to	perform	other	work.	The
callback	function	is	invoked	(that	is	'called	back')	only	after	the	runtime	has	finished
communicating	with	the	filesystem.	The	result	of	the	filesystem	operation	is	passed	into	the
callback	function.

This	non-blocking	approach	is	also	called	asynchronous	programming.	Other	platforms	support
this	(for	example,	C#'s	async/await	keywords	and	.NET's	Task	Parallel	Library).	However,	it	is
baked	in	to	Node.js	in	a	way	that	makes	it	simple	and	natural	to	use.	Asynchronous	API	methods
are	all	called	in	the	same	way	as	fs.stat.	They	all	take	a	callback	function	that	gets	passed	error
and	result	arguments.

Event-driven

The	event-driven	nature	of	Node.js	describes	how	operations	are	scheduled.	In	typical
procedural	environments,	a	program	has	an	entry	point	that	executes	a	set	of	commands	until
completion,	or	enters	a	loop	and	performs	some	processing	on	each	iteration.

Node.js	has	a	built-in	event	loop,	which	isn't	exposed	to	the	developer.	It	is	the	job	of	the	event
loop	to	decide	which	piece	of	code	to	execute	next.	Typically,	this	will	be	a	callback	function	that
is	ready	to	run	in	response	to	some	other	event.	For	example,	a	filesystem	operation	may	have
completed,	a	timeout	may	have	expired,	or	a	new	network	request	may	have	arrived.

This	built-in	event	loop	simplifies	asynchronous	programming	by	providing	a	consistent	approach

and	avoiding	the	need	for	applications	to	manage	their	own	scheduling.

Single-threaded

The	single-threaded	nature	of	Node.js	simply	means	that	there	is	only	one	thread	of	execution	in
each	process.	Also,	each	piece	of	code	is	guaranteed	to	run	to	completion	without	being
interrupted	by	other	operations.	This	greatly	simplifies	development	and	makes	programs	easier
to	reason	about.	It	removes	the	possibility	for	a	range	of	concurrency	issues.	For	example,	it	is
not	necessary	to	synchronize/lock	access	to	shared	in-process	state	as	it	is	in	Java	or	.NET.	A
process	can't	deadlock	itself	or	create	race	conditions	within	its	own	code.	Single-threaded
programming	is	only	feasible	if	the	thread	never	gets	blocked	waiting	for	long-running	work	to
complete.	Thus,	this	simplified	programming	model	is	made	possible	by	the	non-blocking	nature
of	Node.js.

Introducing	the	Node.js	ecosystem
The	built-in	Node.js	APIs	provide	a	low-level	core	for	creating	applications.	Applications
typically	only	use	a	small	number	of	these	APIs	directly.	They	often	use	third-party	library
modules	that	provide	higher-level	abstractions	for	application	development.

Node.js	has	its	own	package	manager,	npm.	This	is	similar	to	.NET's	NuGet	or	the	package
management	aspects	of	Java's	Maven.	Applications	specify	their	dependencies	in	a	simple	JSON
file.

The	npm	registry	provides	a	central	repository	for	packages.	This	registry	has	grown	rapidly	and
is	already	much	larger	(in	terms	of	number	of	available	packages)	than	the	corresponding
repositories	for	other	platforms	(see	http://www.modulecounts.com/).	There	are	hundreds	of
thousands	of	packages	available,	providing	a	vast	array	of	functionality.

The	npm	command	line	tool	can	be	used	to	download	packages	and	install	new	ones.	Library
dependencies	are	installed	locally	to	each	application.	Some	packages	provide	command-line
tools,	which	may	be	installed	globally	rather	than	under	a	specific	project.

Many	frameworks	available	on	npm	are	split	into	a	small	extensible	core	and	a	number	of
composable	modules.	This	approach	makes	it	easy	to	understand	the	libraries	on	which	your
application	depends,	avoiding	the	need	to	reason	about	complex	heavyweight	frameworks.

The	consistency	of	calling	non-blocking	(asynchronous)	API	methods	in	Node.js	carries	through
to	its	third-party	libraries.	This	consistency	makes	it	easy	to	build	applications	that	are
asynchronous	throughout.

http://www.modulecounts.com/

Why	JavaScript?
JavaScript	is	a	language	that	can	seem	unintuitive	compared	to	other	popular	object-oriented
(OO)	languages.	It	also	has	a	number	of	quirks	and	flaws	that	have	drawn	criticism	(and
occasional	ridicule).	It	might	then	seem	a	surprising	choice	of	language	for	a	new	programming
platform.	This	section	discusses	the	factors	that	make	JavaScript	a	more	appealing	choice.

A	clear	canvas
The	size	and	complexity	of	JavaScript	is	part	of	its	appeal.	The	core	language	itself,	which
doesn't	include	APIs	such	as	the	DOM,	is	small	and	simple.	This	makes	it	easy	for	Node.js	to
establish	its	own	styles	and	conventions.

The	new	APIs	provided	by	Node.js	and	the	consistent	approach	to	asynchronous	programming
wouldn't	be	possible	in	a	more	complex	language	with	a	larger	pre-existing	standard	class
library.

Functional	nature
JavaScript	was	first	built	as	a	programming	language	for	client-side	functionality	in	the	browser.
This	might	not	make	it	an	obvious	choice	for	general-purpose	programming.

In	fact,	these	two	use	cases	do	have	something	important	in	common.	User	interface	code	is
naturally	event-driven	(for	example,	binding	event	handlers	to	button	clicks).	Node.js	makes	this
a	virtue	by	applying	an	event-driven	approach	to	general-purpose	programming.

JavaScript	supports	functions	as	first-class	objects.	This	means	it's	easy	to	create	functions
dynamically	and	pass	around	references	to	them.	This	fits	in	well	with	the	asynchronous,	non-
blocking	approach	of	Node.js.	In	particular,	it's	easy	to	expose	and	use	APIs	based	around
callback	functions.

A	bright	future
JavaScript	has	received	a	lot	of	attention	in	the	last	several	years	as	it	has	become	more	widely
used	for	providing	rich	functionality	on	the	Web.	Browser	vendors	have	put	a	huge	amount	of
engineering	effort	into	improving	the	performance	of	JavaScript.	Node.js	benefits	from	this
directly	via	its	use	of	Chrome's	V8	engine.

The	JavaScript	language	itself	is	undergoing	some	major	changes	for	the	better.	The	ECMAScript
2015	standard	(previously	known	as	ES6)	represents	the	most	significant	revision	of	the	language
in	its	history.	It	introduces	features	that	make	the	language	more	intuitive	and	less	verbose.	It	also
addresses	flaws	that	JavaScript	has	been	criticized	for	in	the	past,	removing	gotchas	and	making
programs	easier	to	reason	about.

When	to	use	Node.js
As	discussed	earlier	in	this	chapter,	Node.js	recognizes	that	I/O	is	a	bottleneck	for	many
applications.	On	most	programming	platforms,	threads	will	waste	time	blocking	on	I/O
operations.	There	are	approaches	developers	can	take	to	avoid	this,	but	these	all	involve	adding
some	complexity	to	their	code.	In	Node.js,	the	platform	itself	provides	a	completely	natural
approach.

Writing	web	applications
The	flagship	use	case	for	Node.js	is	building	web	applications.	These	are	inherently	event-driven
as	most	or	all	processing	takes	place	in	response	to	HTTP	requests.	Also,	many	websites	do	little
computational	heavy-lifting	of	their	own.	They	tend	to	perform	a	lot	of	I/O	operations:

Streaming	requests	from	the	client
Talking	to	a	database,	locally	or	over	the	network
Pulling	in	data	from	remote	APIs	over	the	network
Reading	files	from	disk	to	send	back	to	the	client

These	factors	make	I/O	operations	a	likely	bottleneck	for	web	applications.	The	non-blocking
programming	model	of	Node.js	allows	web	applications	to	make	the	most	of	a	single	thread.	As
soon	as	any	of	these	I/O	operations	starts,	the	thread	is	immediately	free	to	pick	up	and	start
processing	another	request.	Processing	of	each	request	continues	via	asynchronous	callbacks
when	I/O	operations	complete.	The	processing	thread	is	only	kicking	off	and	linking	together
these	operations,	never	waiting	for	them	to	complete.	This	allows	Node.js	to	handle	a	much
higher	rate	of	requests	per	thread	than	other	platforms.	You	can	also	still	make	use	of	multiple
threads	(for	example,	on	multi-core	CPUs)	by	simply	running	multiple	instances	of	the	Node.js
process.

Identifying	other	use	cases
There	are	of	course	some	applications	that	don't	perform	much	I/O	and	are	more	likely	to	be	CPU
bound.	Node.js	would	be	less	suitable	for	computationally-intensive	applications.	Programs	that
do	a	lot	of	processing	of	in-memory	data	are	less	concerned	about	I/O.

Web	applications	are	not	the	only	I/O-heavy	applications	though.	Other	classes	of	program	that
could	be	a	good	candidate	for	Node.js	include	the	following:

Tools	that	manipulate	large	amounts	of	data	on	disk
Supervisor	programs	coordinating	other	software	or	hardware
Non-browser	GUI	applications	that	need	to	respond	to	user	input

Node.js	is	especially	suitable	for	glue	applications	that	pull	together	functionality	from	other
remote	services.	The	increasing	popularity	of	microservices	as	an	architectural	pattern	makes	this
kind	of	application	more	common.

Why	now?
Node.js	has	been	around	for	several	years,	but	now	is	the	perfect	time	to	start	using	it	if	you
haven't	already.

The	release	of	Node.js	v4	towards	the	end	of	2015	consolidated	the	project's	governance	model
and	heralds	Node.js	coming	to	maturity.	It	also	allows	the	project	to	keep	more	up	to	date	with	the
V8	engine.	This	means	that	Node.js	can	benefit	more	directly	from	ongoing	development	on	V8.
For	example,	security	and	performance	improvements	to	V8	will	now	make	their	way	into
Node.js	much	sooner.

As	discussed	earlier	in	this	chapter,	the	release	of	the	ECMAScript	2015	standard	makes
JavaScript	a	much	more	appealing	language.	It	pulls	in	useful	features	from	other	popular	OO
languages	and	resolves	a	number	of	long-standing	flaws	in	JavaScript.

Meanwhile,	the	ecosystem	of	third	party	libraries	and	tools	around	Node.js	and	JavaScript
continues	to	grow.	Node.js	is	treated	as	a	first-class	citizen	by	major	hosting	platforms.
Companies	such	as	Google	and	Microsoft	are	also	throwing	their	weight	behind	JavaScript	and
related	technologies.

Summary
In	this	chapter,	we	have	understood	Node.js	and	its	distinctive	execution	model,	explored	the
growing	ecosystem	around	Node.js	and	JavaScript,	seen	the	reasons	for	JavaScript	as	a	language
choice,	and	described	the	kinds	of	application	that	can	benefit	from	Node.js.

Now	that	you	know	how	Node.js	works	and	when	to	use	it,	it's	time	to	dive	in	and	get	our	first
Node.js	application	up	and	running.

Chapter	2.	Getting	Started	with	Node.js
This	chapter	will	get	you	up	and	running	with	Node.js.	You'll	see	how	quick	this	can	be	and	how
easy	it	is	to	start	writing	web	applications.	You'll	also	choose	a	development	environment	for
working	with	Node.js.	In	this	chapter,	we	will	cover	the	following	topics:

Installing	Node.js
Writing	our	first	Node.js	web	application
Setting	up	our	development	environment

Installing	and	running	Node.js
To	install	Node.js,	visit	https://nodejs.org,	and	download	and	run	the	installer	package	for	the
currently	recommended	version.	The	examples	in	this	book	are	based	on	Node.js	v6,	released	in
April	2016	and	supported	through	to	April	2018.

After	installation,	open	up	a	console	window	(run	command	prompt	on	Windows,	or	terminal	on
Mac)	and	type	node.

This	opens	the	Node.js	REPL,	which	works	like	the	JavaScript	console	in	browsers.	Try	typing	in
a	few	commands	and	see	the	output:

>	function	square(x)	{	return	x*x;	}

undefined

>	square(42)

1764

>	new	Date()

2016-05-02T16:08:41.915Z

>	var	foo	=	{	bar:	'baz'	}

undefined

>	typeof	foo

'object'

>	foo.bar

'baz'

Now	let's	make	use	of	one	of	the	Node.js-specific	APIs	to	create	an	HTTP	server.	Type	the
following	commands	into	the	REPL	(the	output	of	each	command	is	omitted	from	the	listing	below
for	brevity):

>	var	listener	=	function(request,	response)	{	response.end('Hello	World!')	}

>	require('http').createServer(listener).listen(3000)

Now	try	visiting	http://localhost:3000	in	your	browser.	Congratulations!	You	have	written
your	first	web	server,	in	just	two	lines	of	code.	The	first	line	defines	a	callback	function	for
handling	HTTP	requests	and	returning	a	response.	The	second	line	sets	up	a	new	server	that
accepts	HTTP	requests	on	port	3000	and	invokes	our	callback	function	for	each	request.

You	can	exit	the	Node.js	REPL	by	typing	process.exit().

https://nodejs.org

Choosing	an	editor
Of	course,	we're	not	going	to	write	all	of	our	code	inside	the	REPL.	You	can	use	any	text	editor	or
IDE	you	like	for	writing	JavaScript	for	Node.js.	If	you're	not	sure	what	to	use,	try	one	of	the
following:

Atom	(https://atom.io/)
Visual	Studio	Code	(https://code.visualstudio.com/)

These	are	both	free,	lightweight	IDEs	that	are	actually	implemented	in	Node.js.	They	are	both
available	for	Windows,	Mac,	and	Linux.

The	code	listings	in	the	rest	of	this	book	will	be	JavaScript	source	code	files,	not	commands	to	be
typed	into	the	REPL.

https://atom.io/
https://code.visualstudio.com/

Using	an	application	framework
The	server	we	created	in	the	REPL	used	the	low-level	HTTP	module	built	into	Node.js.	This
provides	an	API	for	creating	a	server	that	reads	data	from	requests	and	writes	to	responses.

As	with	other	programming	platforms,	there	are	frameworks	available	providing	more	useful
high-level	abstractions	for	writing	web	applications.	These	include	things	such	as	URL	routing
and	templating	engines.	ASP.NET	MVC,	Ruby	on	Rails,	and	Spring	MVC	are	all	examples	of
such	frameworks	on	different	platforms.

Note

Example	code

If	you	get	stuck	at	any	point	in	this	book,	you	can	follow	along	with	the	code	at
https://github.com/NodeJsForDevelopers	(there	is	a	repository	for	each	chapter	and	a	commit	for
each	heading	that	introduces	any	new	code).

In	this	book,	we'll	be	using	a	framework	called	Express	to	write	a	web	application	in	Node.js.
Express	is	the	most	popular	web	application	framework	for	Node.js.	It	is	well	suited	to	small-
scale	applications	such	as	the	one	we'll	be	building.	It	also	provides	a	good	introduction	to
important	concepts.	Most	other	popular	Node.js	web	application	frameworks	are	conceptually
similar	to	Express,	and	several	are	actually	built	on	top	of	it.

https://github.com/NodeJsForDevelopers

Getting	started	with	Express
To	get	our	Express-based	application	started,	we'll	use	npm	to	install	the	express-generator
package,	which	will	create	a	skeleton	application	based	on	Express.	Run	the	following	command
in	the	console	(that	is,	your	regular	terminal,	not	inside	the	Node.js	REPL):

>	npm	install	-g	express-generator@~4.x

The	-g	option	installs	the	Express	generator	globally,	so	you	can	run	it	from	anywhere.	The	next
command	we	run	will	create	a	new	folder	to	contain	our	application	code,	so	run	this	command
wherever	you	want	this	folder	to	reside:

>	express	--hogan	chapter02

Note

Templating	engines

Express	offers	a	choice	of	templating	engines.	We'll	be	using	Hogan,	which	is	an	implementation
of	the	Mustache	templating	engine.	You	may	already	be	familiar	with	Mustache	from	client-side
libraries.	Don't	worry	if	not,	though.	It's	very	simple	to	pick	up.

As	you	can	see	from	the	output,	this	sets	up	a	minimal	standard	application	structure	for	us.	Now
run	the	following	command	(as	instructed	by	the	generator	output)	to	install	the	modules	on	which
our	application	depends:

>	cd	chapter02

>	npm	install

The	generator	has	created	a	skeleton	Node.js	web	application	for	us.	Let's	try	running	this:

>	npm	start

Now	visit	http://localhost:3000	again	and	you'll	see	the	Express	welcome	page	as	shown
here:

Exploring	our	Express	application
Let's	look	at	the	folders	that	the	Express	generator	created	for	us:

node_modules:	This	folder	contains	the	third-party	packages	that	our	application	depends
on,	which	are	installed	when	we	run	npm	install	(it	is	common	to	exclude	this	directory
from	source	control)
public:	This	folder	contains	the	static	assets	of	our	application:	images,	client-side
JavaScript,	and	CSS
routes:	This	folder	contains	the	logic	of	our	application
views:	This	folder	contains	the	server-side	templates	for	our	application

There	are	also	some	files	that	aren't	contained	in	any	of	the	preceding	folders:

package.json:	This	file	contains	metadata	about	our	application	used	by	the	npm	install
and	npm	start	commands	used	earlier.	We'll	explore	this	file	further	in	Chapter	4,
Introducing	Node.js	Modules.
app.js:	This	file	is	the	main	entry	point	for	our	application,	which	glues	together	all	of	the
preceding	components	and	initializes	Express.	We'll	go	through	this	file	in	more	detail	later
on	in	this	chapter.
bin/www:	This	file	is	a	Node.js	script	that	launches	our	application.	This	is	the	script	that
gets	executed	when	we	run	npm	start.

It's	not	important	to	understand	everything	in	the	bin/www	script	at	this	point.	However,	note	that
it	uses	the	same	http.createServer	call	as	in	the	REPL	example	before.	This	time,	though,	the
listener	argument	is	not	a	simple	function	but	is	our	entire	application	(defined	in	app.js).

Understanding	Express	routes	and	views
Routes	in	Express	contain	the	logic	for	handling	requests	and	rendering	the	appropriate	response.
They	have	similar	responsibilities	to	controllers	in	MVC	frameworks	such	as	ASP.NET,	Spring
MVC,	or	Ruby	on	Rails.

The	route	that	serves	the	page	we	just	viewed	in	the	browser	can	be	found	at	routes/index.js
and	looks	like	this:

var	express	=	require('express');

var	router	=	express.Router();

/*	GET	home	page.	*/

router.get('/',	function(req,	res,	next)	{

		res.render('index',	{	title:	'Express'	});

});

module.exports	=	router;

The	require	call	imports	the	Express	module.	We	will	discuss	how	this	works	in	much	more
detail	in	Chapter	4,	Introducing	Node.js	Modules.	For	now,	think	of	it	like	a	using	or	import
statement	in	.NET	or	Java.	The	call	to	express.Router()	creates	a	context	under	which	we	can
define	new	routes.	We	will	discuss	this	in	more	detail	later	on	in	this	chapter	(see	Creating
modular	applications	with	Express).	The	router.get()	call	adds	a	new	handler	to	this	context
for	GET	requests	to	the	path	'/'.

The	callback	function	takes	a	request	and	response	argument,	similar	to	the	listener	in	our
"Hello	World!"	server	at	the	beginning	of	this	chapter.	However,	the	request	and	response	in	this
case	are	objects	provided	by	Express,	with	additional	functionality.

The	render	function	allows	us	to	respond	with	a	template,	which	is	rendered	using	the	data	we
pass	to	it.	This	is	typically	the	last	thing	you	will	do	in	a	route's	callback	function.	Here,	we
pass	an	object	containing	the	title	Express	to	the	view	template.

The	view	template	can	be	found	at	views/index.hjs	and	looks	like	this:

<!DOCTYPE	html>

<html>

		<head>

				<title>{{	title	}}</title>

				<link	rel='stylesheet'	href='/stylesheets/style.css'	/>

		</head>

		<body>

				<h1>{{	title	}}</h1>

				<p>Welcome	to	{{	title	}}</p>

		</body>

</html>

This	is	a	Hogan	template.	As	mentioned	previously,	Hogan	is	an	implementation	of	Mustache,	a

very	lightweight	templating	language	that	limits	the	amount	of	logic	in	views.	You	can	see	the	full
syntax	of	Mustache	at	https://mustache.github.io/mustache.5.html.

Our	template	is	a	simple	HTML	page	with	some	special	template	tags.	The	{{	title	}}	tags
are	replaced	with	the	title	field	from	the	data	passed	in	by	the	route.

Let's	change	the	heading	in	the	view	to	include	a	name	as	well	as	a	title.	It	should	look	like	this:

<h1>Hello,	{{	name	}}!</h1>

Try	reloading	the	page	again.	You	should	see	the	following:

We	don't	have	a	name	yet.	That's	because	there	is	no	name	field	in	our	view	data.	Let's	fix	that	by
editing	our	route:

var	express	=	require('express');

var	router	=	express.Router();

/*	GET	home	page.	*/

router.get('/',	function(req,	res,	next)	{

		res.render('index',	{	title:	'Express',	name:	'World'	});

});

module.exports	=	router;

https://mustache.github.io/mustache.5.html

If	we	refresh	our	browser	again	at	this	point,	we	still	won't	see	the	name.	That's	because	our
application	has	already	loaded	our	route,	so	won't	pick	up	the	change.

Go	back	to	your	terminal	and	kill	the	running	application.	Start	it	again	(using	npm	start)	and
reload	the	page	in	the	browser.	You	should	now	see	the	text	Hello,	World!.

Using	nodemon	for	automatic	restarts
Restarting	the	application	every	time	we	make	a	change	is	a	bit	tedious.	We	can	do	better	by
running	our	application	with	nodemon,	which	will	automatically	restart	the	application	whenever
we	make	a	change:

>	npm	install	-g	nodemon

>	nodemon

Try	updating	the	routes/index.js	file	again	(for	example,	change	the	name	string	to	your	own
name),	then	refresh	the	browser.	This	time,	the	change	should	appear	without	you	needing	to
manually	stop	and	restart	the	application.	Note	that	the	process	is	restarted	by	nodemon	though,	so
if	our	application	stored	any	internal	state,	this	would	be	lost.

Creating	modular	applications	with	Express
To	find	out	how	our	route	gets	called	when	a	request	is	made,	we	need	to	look	at	the	app.js
bootstrapping	file.	See	the	following	two	lines:

var	routes	=	require('./routes/index');

...

app.use('/',	routes);

This	tells	Express	to	use	the	routing	context	defined	in	routes/index.js	for	requests	to	the	root
path	('/').

There	is	a	similar	call	setting	up	a	route	under	the	/users	path.	Try	visiting	this	path	in	your
browser.	The	route	that	renders	this	response	is	defined	in	/routes/users.js.

Note	that	the	route	in	/routes/users.js	is	also	bound	to	'/',	the	same	as	the	route	in
/routes/index.js.	The	reason	this	works	is	that	these	paths	are	each	relative	to	a	separate
Router	instance,	and	the	instance	created	in	/routes/users.js	is	mounted	under	the	/users
path	in	app.js.

This	mechanism	makes	it	easy	to	build	large	applications	composed	from	smaller	modules.	You
can	think	of	it	as	similar	to	the	Areas	functionality	in	ASP.NET	MVC,	or	simply	as	an	alternative
structure	to	MVC	controllers	grouping	together	action	methods.

Bootstrapping	an	Express	application
Let's	take	a	look	at	the	rest	of	the	app.js	file.	Your	file	might	not	look	identical	to	the	listings
below	due	to	minor	differences	in	our	versions	of	Express,	but	it	will	contain	broadly	the	same
sections.

The	various	require()	calls	at	the	top	of	the	file	import	the	modules	used	by	the	application,
including	built-in	Node.js	modules	(HTTP	and	Path),	third-party	libraries,	and	the	application's
own	routes.	The	following	lines	initialize	Express,	telling	it	where	to	look	for	view	templates	and
what	rendering	engine	to	use	(in	our	case,	Hogan):

var	app	=	express();

//	view	engine	setup

app.set('views',	path.join(__dirname,	'views'));

app.set('view	engine',	'{views}');

The	rest	of	the	file	consists	of	calls	to	app.use().	These	register	various	different	middleware
for	processing	the	request.	The	order	in	which	they	are	registered	forms	a	request	processing
pipeline.	You	might	already	be	familiar	with	this	pattern	from	servlet	filters	in	Java,	or	the
IAppBuilder/IApplicationBuilder/IBuilder	interfaces	in	OWIN	and	ASP.NET.	Don't	worry
if	not	though;	we'll	explore	middleware	thoroughly	here.

Understanding	Express	middleware
Middleware	functions	are	the	fundamental	building	blocks	of	an	Express	application.	They	are
simply	functions	that	take	request	and	response	arguments	(just	like	our	listener	functions	before)
and	a	reference	to	the	next	middleware	in	the	chain.

Each	middleware	function	can	manipulate	the	request	and	response	objects	before	passing	onto
the	next	middleware	in	the	chain.	By	chaining	middleware	together	in	this	way,	you	can	build
complex	functionality	from	simple	modular	components.	It	also	allows	clean	separation	between
your	application	logic	and	cross-cutting	concerns	such	as	logging,	authentication,	or	error
handling.

Instead	of	passing	control	to	the	next	middleware	in	the	chain,	a	function	can	also	end	the
processing	of	the	request	and	return	a	response.	Middleware	can	also	be	mounted	to	specific
paths	or	router	instances,	for	example,	if	we	want	enhanced	logging	on	a	particular	part	of	our
site.

In	fact,	Express	routes	are	just	another	example	of	middleware:	the	routes	that	we	have	already
looked	at	are	ordinary	middleware	functions	with	the	same	three	arguments	noted	above.	They
just	happen	to	be	mounted	to	a	specific	path	and	to	return	a	response.

Implementing	error	handling

Let's	take	a	closer	look	at	some	of	the	middleware	in	app.js.	First,	look	at	the	404	error	handler:

app.use(function(req,	res,	next)	{

		var	err	=	new	Error('Not	Found');

		err.status	=	404;

		next(err);

});

This	function	always	returns	a	response.	So	why	do	we	not	always	get	a	404	from	our
application?	Remember	that	middleware	is	called	in	order,	and	the	routes	(which	are	registered
before	this	function)	return	a	response	and	don't	call	the	next	middleware.	This	means	that	the	404
function	will	only	be	called	for	requests	that	don't	match	any	route,	which	is	exactly	what	we
want.

What	about	the	other	two	error	handlers	in	app.js?	They	return	a	500	response	with	a	custom
error	page.	Why	does	our	application	not	return	a	500	response	in	all	cases?	How	do	these	get
executed	if	another	middleware	throws	an	error	before	calling	next()?

Error-handling	is	a	special	case	in	Express.	Error-handling	middleware	functions	take	four
arguments	instead	of	three,	with	the	first	parameter	being	an	error.	They	should	be	registered	last,
after	all	other	middlewares.

In	the	case	of	an	error	(either	an	error	being	thrown	or	a	middleware	function	passing	in	an	error
argument	when	calling	next),	Express	will	skip	any	other	non-error	handling	middleware	and

start	executing	the	error	handlers.

Using	Express	middleware

Let's	see	some	Express	middleware	in	action	by	making	use	of	cookie	parsing	middleware
(which	is	already	part	of	the	skeleton	application	created	by	express-generator).	We	can	do
this	by	using	a	cookie	to	store	how	many	times	someone	has	visited	the	site.	Update
routes/index.js	as	follows:

router.get('/',	function(req,	res,	next)	{

		var	visits	=	parseInt(req.cookies.visits)	||	0;

		visits	+=	1;

		res.cookie('visits',	visits);

		res.render('index',

						{	title:	'Express',	name:	'World',	visits:	visits	}

);

});

And	add	a	new	line	to	views/index.hjs:

<p>You	have	visited	this	site	{{visits}}	time(s).</p>

Now	visit	http://localhost:3000/	again	and	refresh	the	page	a	few	times.	You	should	see	the
visit	count	increase	based	on	the	value	stored	in	the	cookie.	To	see	what	the	cookie	parsing
middleware	is	doing	for	us,	try	deleting	or	commenting	out	the	following	line	from	app.js	and
reloading	the	page:

app.use(cookieParser());

As	you	can	see	from	the	error,	the	cookies	property	of	the	request	is	now	undefined.	The	cookie
parsing	middleware	looks	at	the	cookie	header	of	the	request	and	turns	it	into	a	convenient
JavaScript	object	for	us.	This	is	a	common	use	case	for	middleware.	The	bodyParser
middleware	functions	do	a	very	similar	job	with	the	request	body,	turning	raw	text	into	a
JavaScript	object	that	is	easier	to	use	in	our	routes.

Note	that	the	error	response	above	also	demonstrates	our	error	handling	middleware.	Try
commenting	out	the	error	handlers	at	the	end	of	the	app.js	file	and	reloading	the	page	again.	We
now	get	the	default	stack	trace	rather	than	the	custom	error	response	defined	in	our	handler.

Summary
In	this	chapter,	we	installed	Node.js,	saw	how	to	interact	with	it	from	the	command	line,	and
started	using	it	to	write	web	applications.	We	learned	about	Express	and	how	we	can	structure	an
application	using	routes	and	middleware.

Although	we've	seen	some	code	in	this	chapter,	we	haven't	really	explored	the	JavaScript	syntax
in	detail.	Before	adding	more	functionality	to	our	application,	we	should	make	sure	that	we're	up
to	speed	with	JavaScript.	This	is	the	subject	of	the	next	chapter.

Chapter	3.	A	JavaScript	Primer
It's	important	to	have	a	solid	understanding	of	JavaScript	to	write	Node.js	applications.
JavaScript	is	not	a	large	or	complex	language,	but	it	may	seem	unusual,	and	has	a	few	quirks	and
gotchas	to	watch	out	for.

The	recent	release	of	ECMAScript	2015	(previously	named	ES6)	introduces	a	number	of	new
language	features	to	make	JavaScript	programming	easier	and	safer.	Not	all	ES2015	features	are
available	in	all	implementations	yet.	However,	all	the	ES2015	features	we'll	mention	in	this
chapter	are	available	in	Node.js	and	in	most	other	JavaScript	environments.

In	this	chapter,	we'll	familiarize	ourselves	with	JavaScript	so	we	can	write	Node.js	applications
with	confidence.	We	will	cover	the	following	topics:

The	JavaScript	type	system
JavaScript	as	a	functional	programming	language
Object-oriented	programming	in	JavaScript
JavaScript's	prototype-based	inheritance

Introducing	JavaScript	types
JavaScript	is	a	dynamically-typed	language.	These	means	that	types	are	checked	at	runtime	when
you	try	to	do	something	with	a	variable,	rather	than	by	a	compiler.	For	example,	the	following	is
valid	JavaScript	code:

var	myVariable	=	0;	

console.log(typeof	myVariable);	//	Prints	"number"

myVariable	=	"1";

console.log(typeof	myVariable);	//	Prints	"string"

Although	variables	do	have	a	type,	this	may	change	throughout	the	lifetime	of	the	variable.

JavaScript	also	tries	to	implicitly	convert	types	where	possible,	for	example,	using	the	equality
operator:

console.log(2	==	"2");	//	Prints	"true"

Although	this	might	make	sense	for	frontend	JavaScript	(for	example	comparing	against	the	value
of	a	form	input),	in	general,	it	is	more	likely	to	be	a	source	of	errors	or	confusion.	For	this	reason,
it	is	recommended	to	always	use	the	strict	equality	and	inequality	operators:

console.log(2	===	"2");	//	Prints	"false"

console.log(2	!==	"2");	//	Prints	"true"

JavaScript	primitive	types
JavaScript	has	a	small	number	of	primitive	types,	similar	to	C#	and	Java.	These	are	string,
number,	and	Boolean,	as	well	as	the	special	single-valued	types,	null	and	undefined.	ES2015	also
adds	the	symbol	type,	but	we	won't	cover	it	here	as	its	use	cases	are	more	advanced.

Strings	are	immutable,	like	in	C#	and	Java.	Concatenating	strings	creates	a	new	string	instance.
String	literals	can	be	defined	with	double	quotes	(as	in	C#	or	Java)	or	single	quotes.	These	can
be	used	interchangeably	(usually	whatever	is	easier	to	avoid	escaping).

ES2015	also	introduces	support	for	template	strings,	which	are	defined	using	backticks	and	can
include	interpolated	expressions.

Here	are	several	ways	to	define	the	same	string:

var	singleQuoted	=	'"Hey",	I	said,	"I\'m	a	string"';

var	doubleQuoted	=	"\"Hey\",	I	said,	\"I'm	a	string\"";

console.log(doubleQuoted	===	singleQuoted);	//	Prints	"true"

var	expression	=	'Hey';

var	templated	=	`"${expression}",	I	said,	"I'm	a	string"`;

console.log(templated	===	singleQuoted);	//	Prints	"true"

Number	is	JavaScript's	only	built-in	numeric	type.	It	is	a	double-precision	64-bit	floating-point
number,	like	double	in	C#	or	Java.	It	has	special	values	NaN	(not	a	number)	and	Infinity	for
values	that	cannot	be	represented	otherwise:

console.log(1	/	0);	//	Prints	"Infinity"

console.log(Infinity	+	1);	//	Prints	"Infinity"	

console.log((1	/	0)	===	(2	/	0));	//	Prints	"true"

var	notANumber	=	parseInt("foo");

console.log(notANumber);	//	Prints	"NaN"

console.log(notANumber	===	NaN);	//	Prints	"false"

console.log(isNaN(notANumber));	//	Prints	"true"

Note

Note	that	although	there	is	only	a	single	NaN	value,	it	is	not	treated	as	equal	to	itself.	JavaScript
provides	the	special	isNaN	function	for	testing	whether	a	variable	contains	the	NaN	value.

The	null	type	has	a	single	instance,	represented	by	the	literal	null,	just	as	in	C#	or	Java.
JavaScript	also	has	the	undefined	type.	Variables	or	parameters	that	have	never	been	assigned
will	have	the	value	undefined:

var	declared;

console.log(typeof	declared);	//	Prints	"undefined"

console.log(declared	===	undefined);	//	Prints	"true"

console.log(typeof	undeclared);	//	Prints	"undefined"

console.log(undeclared	===	undefined);	//	throws	ReferenceError

Note	that	our	undeclared	identifier	cannot	be	accessed	as	a	variable	in	normal	code	because	it
has	not	been	declared.	However,	we	can	pass	it	to	the	typeof	operator,	which	evaluates	to	the
undefined	type.

Functional	object-oriented	programming
JavaScript	is	a	functional	object-oriented	programming	language.	However,	it	is	quite	different	to
other	object-oriented	programming	languages	such	as	C#	or	Java.	Despite	having	a	similar	syntax,
there	are	some	important	differences.

Functional	programming	in	JavaScript
In	JavaScript,	functions	are	first-class	objects.	This	means	that	functions	can	be	treated	like	any
other	object:	they	can	be	created	dynamically,	assigned	to	variables,	or	passed	into	methods	as
arguments.

This	makes	it	very	easy	to	specify	event	callbacks,	or	to	program	in	a	more	functional	style	using
higher-order	functions.	Higher-order	functions	are	functions	that	take	other	functions	as
arguments,	and/or	return	another	function.	Here's	a	trivial	example	of	filtering	an	array	of	numbers
first	in	an	imperative	style	and	then	in	a	functional	style.	Note	that	this	example	also	shows
JavaScript's	array	literal	notation	for	creating	arrays,	using	square	brackets.	It	also	demonstrates
JavaScript's	conditional	construct	and	one	of	its	loop	constructs,	which	should	be	familiar	from
other	languages:

var	numbers	=	[1,2,3,4,5,6,7,8];

var	filteredImperatively	=	[];

for	(var	i	=	0;	i	<	numbers.length;	++i)	{

				var	number	=	numbers[i];

				if	(number	%	2	===	0)	{

								filteredImperatively.push(number);

				}

}

console.log(filteredImperatively);	//	Prints	[2,	4,	6,	8]

var	filteredFunctionally	=

				numbers.filter(function(x)	{	return	x	%	2	===	0;	});

console.log(filteredFunctionally);	//	Prints	[2,	4,	6,	8]

The	second	approach	in	the	example	makes	use	of	a	function	expression	to	define	a	new,
anonymous	function	inline.	In	general,	this	is	referred	to	as	a	lambda	expression	(after	lambda
calculus	in	mathematics).	This	function	is	passed-in	to	the	built	in	filter	expression	available
on	JavaScript	arrays.

In	C#,	assignment	and	passing	of	behavior	was	originally	only	possible	using	delegates.	Since	C#
3.0,	support	for	lambda	expressions	makes	it	much	easier	to	use	functions	in	this	way.	This
allows	a	more	functional	style	of	programming,	for	example,	using	C#'s	Language-Integrated
Query	(LINQ)	features.

In	Java,	for	a	long	time	there	was	no	native	way	for	a	function	to	exist	independently.	You	would
have	to	define	a	method	on	a	(possibly	anonymous)	class	and	pass	this	around,	adding	a	lot	of
boilerplate.	Java	8	introduces	support	for	lambda	expressions	in	a	similar	way	to	C#.

While	C#	and	Java	may	have	taken	a	while	to	catch	up,	you	might	be	thinking	that	JavaScript	is
now	falling	behind.	The	syntax	for	defining	a	new	function	in	JavaScript	is	quite	clumsy
compared	to	the	lambda	syntax	in	C#	and	Java.

This	is	especially	unfortunate	since	JavaScript	uses	a	C-like	syntax	for	familiarity	with	other

languages	like	Java!	This	is	resolved	in	ES2015	with	arrow	functions,	allowing	us	to	rewrite	the
previous	example	as	follows:

var	numbers	=	[1,2,3,4,5,6,7,8];

var	filteredFunctionally	=	numbers.filter(x	=>	x	%	2	===	0);

console.log(filteredFunctionally);	//	Prints	[2,	4,	6,	8]

This	is	a	simple	arrow	function	with	a	single	argument	and	a	single	expression.	In	this	case,	the
expression	is	implicitly	returned.

Note

It	can	be	useful	to	read	the	=>	notation	in	arrow	functions	as	goes	to.

Arrow	functions	may	have	multiple	(or	zero)	arguments,	in	which	case	they	must	be	surrounded
by	parentheses.	If	the	function	body	is	enclosed	in	braces,	it	may	contain	multiple	statements,	in
which	case	there	is	no	implicit	return.	These	are	exactly	the	same	syntax	rules	as	for	lambda
expressions	in	C#.

Here	is	a	more	complex	arrow	function	expression	that	returns	the	maximum	of	its	two	arguments:

var	max	=	(a,	b)	=>	{

				if	(a	>	b)	{

								return	a;

				}	else	{

								return	b;

				}

};

Understanding	scopes	in	JavaScript
Traditionally,	in	JavaScript,	there	are	only	two	possible	variable	scopes:	global	and	functional.
That	is,	an	identifier	(a	variable	name)	is	defined	globally,	or	for	an	entire	function.	This	can	lead
to	some	surprising	behavior,	for	example:

function	scopeDemo()	{

				for	(var	i	=	0;	i	<	10;	++i)	{

								var	j	=	i	*	2;

				}

				console.log(i,	j);

}

scopeDemo();

In	most	other	languages,	you	would	expect	i	to	exist	for	the	duration	of	the	for	loop,	and	j	to
exist	for	each	loop	iteration.	You	would	therefore	expect	this	function	to	log	undefined
undefined.	In	fact,	it	logs	10	18.	This	is	because	the	variables	are	not	scoped	to	the	block	of	the
for	loop,	but	to	the	entire	function.	So	the	preceding	code	is	equivalent	to	the	following:

function	scopeDemo()	{

				var	i,	j;

				for	(i	=	0;	i	<	10;	++i)	{

								j	=	i	*	2;

				}

				console.log(i,	j);

}

scopeDemo();

JavaScript	treats	all	variable	declarations	as	if	they	were	made	at	the	top	of	the	function.	This	is
known	as	variable	hoisting.	Although	consistent,	this	can	be	confusing	and	lead	to	subtle	bugs.

ES2015	introduces	the	let	keyword	for	declaring	variables.	This	works	exactly	the	same	as	var
except	that	variables	are	block-scoped.	There	is	also	the	const	keyword,	which	works	the	same
as	let	except	that	it	does	not	allow	reassignment.	It	is	recommended	that	you	always	use	let
rather	than	var,	and	use	const	wherever	possible.	Check	the	following	code	for	example:

function	scopeDemo()	{

				"use	strict";

				for	(let	i	=	0;	i	<	10;	++i)	{

								let	j	=	i	*	2;

				}

				console.log(i,	j);	//	Throws	ReferenceError:	i	is	not	defined

}

scopeDemo();

Note	the	"use	strict"	string	in	the	preceding	example.	We'll	discuss	this	in	the	next	section.

Strict	mode

The	"use	strict"	string	is	a	hint	to	the	JavaScript	interpreter	to	enable	Strict	Mode.	This
makes	the	language	safer	by	treating	certain	usages	of	the	language	as	errors.	For	example,

mistyping	a	variable	name	without	strict	mode	will	define	a	new	variable	at	the	global	level,
rather	than	causing	an	error.

Strict	mode	is	also	now	used	by	some	browsers	to	enable	features	in	the	newest	version	of
JavaScript,	such	as	the	let	and	const	keywords	previously	shown.	If	you	are	running	these
examples	in	a	browser,	you	may	find	that	the	preceding	listing	doesn't	work	without	strict	mode.

In	any	case,	you	should	always	enable	strict	mode	in	all	of	your	production	code.	The	"use
strict"	string	affects	all	code	in	the	current	scope	(that	is,	JavaScript's	traditional	functional	or
global	scope),	so	should	usually	be	placed	at	the	top	of	a	function	(or	the	top	of	a	module's	script
file	in	Node.js).

Object-oriented	programming	in	JavaScript
Anything	that	is	not	one	of	JavaScript's	built-in	primitives	(strings,	number,	null,	and	so	on)	is	an
object.	This	includes	functions,	as	we've	seen	in	the	previous	section.	Functions	are	just	a	special
type	of	object	that	can	be	invoked	with	arguments.	Arrays	are	a	special	type	of	object	with	list-
like	behavior.	All	objects	(including	these	two	special	types)	can	have	properties,	which	are	just
names	with	a	value.	You	can	think	of	JavaScript	objects	as	a	dictionary	with	string	keys	and
object	values.

Objects	can	be	created	with	properties	using	the	object	literal	notation,	as	in	the	following
example:

var	myObject	=	{

				myProperty:	"myValue",

				myMethod:	function()	{

								return	`myProperty	has	value	"${this.myProperty}"`;

				}

};

console.log(myObject.myMethod());

You	might	find	this	notation	familiar	even	if	you've	never	written	any	JavaScript,	as	it	is	the	basis
for	JSON.	Note	that	a	method	is	just	an	object	property	that	happens	to	have	a	function	as	its
value.	Also	note	that	within	methods,	we	can	refer	to	the	containing	object	using	the	this
keyword.

Finally,	note	that	we	did	not	need	to	define	a	class	for	our	object.	JavaScript	is	unusual	amongst
object-oriented	languages	in	that	it	doesn't	really	have	classes.

Programming	without	classes

In	most	object-oriented	languages,	we	can	declare	methods	in	a	class	for	use	by	all	of	its	object
instances.	We	can	also	share	behavior	between	classes	through	inheritance.

Let's	say	we	have	a	graph	with	a	very	large	number	of	points.	These	may	be	represented	by
objects	that	are	created	dynamically	and	have	some	common	behavior.	We	could	implement
points	like	this:

function	createPoint(x,	y)	{

				return	{

								x:	x,

								y:	y,

								isAboveDiagonal:	function()	{

												return	this.y	>	this.x;

								}

				};

}

var	myPoint	=	createPoint(1,	2);

console.log(myPoint.isAboveDiagonal());	//	Prints	"true"

One	problem	with	this	approach	is	that	the	isAboveDiagonal	method	is	redefined	for	each	point
on	our	graph,	thus	taking	up	more	space	in	memory.

We	can	address	this	using	prototypal	inheritance.	Although	JavaScript	doesn't	have	classes,
objects	can	inherit	from	other	objects.	Each	object	has	a	prototype.	If	we	try	to	access	a	property
on	an	object	and	that	property	doesn't	exist,	the	interpreter	will	look	for	a	property	with	the	same
name	on	the	object's	prototype	instead.	If	it	doesn't	exist	there,	it	will	check	the	prototype's
prototype,	and	so	on.	The	prototype	chain	will	end	with	the	built-in	Object.prototype.

We	can	implement	this	for	our	point	objects	as	follows:

var	pointPrototype	=	{

				isAboveDiagonal:	function()	{

								return	this.y	>	this.x;

				}

};

function	createPoint(x,	y)	{

				var	newPoint	=	Object.create(pointPrototype);

				newPoint.x	=	x;

				newPoint.y	=	y;

				return	newPoint;

}

var	myPoint	=	createPoint(1,	2);	

console.log(myPoint.isAboveDiagonal());	//	Prints	"true"

The	isAboveDiagonal	method	now	only	exists	once	in	memory,	on	the	pointPrototype	object.

When	we	try	to	call	isAboveDiagonal	on	an	individual	point	object,	it	is	not	present,	but	it	is
found	on	the	prototype	instead.

Note	that	this	tells	us	something	important	about	the	this	keyword.	It	actually	refers	to	the	object
that	the	current	function	was	called	on,	rather	than	the	object	it	was	defined	on.

Creating	objects	with	the	new	keyword

We	can	rewrite	the	preceding	code	example	in	a	slightly	different	form,	as	follows:

var	pointPrototype	=	{

				isAboveDiagonal:	function()	{

								return	this.y	>	this.x;

				}

}

function	Point(x,	y)	{

				this.x	=	x;

				this.y	=	y;

}

function	createPoint(x,	y)	{

				var	newPoint	=	Object.create(pointPrototype);

				Point.apply(newPoint,	arguments);

				return	newPoint;

}

var	myPoint	=	createPoint(1,	2);

This	makes	use	of	the	special	arguments	object,	which	contains	an	array	of	the	arguments	to	the
current	function.	It	also	uses	the	apply	method	(which	is	available	on	all	functions)	to	call	the
Point	function	on	the	newPoint	object	with	the	same	arguments.

At	the	moment,	our	pointPrototype	object	isn't	particularly	closely	associated	with	the	Point
function.	Let's	resolve	this	by	using	the	Point	function's	prototype	property	instead.	This	is	a
built-in	property	available	on	all	functions	by	default.	It	just	contains	an	empty	object	to	which
we	can	add	additional	properties:

function	Point(x,	y)	{

				this.x	=	x;

				this.y	=	y;

}

Point.prototype.isAboveDiagonal	=	function()	{

				return	this.y	>	this.x;

}

function	createPoint(x,	y)	{

				var	newPoint	=	Object.create(Point.prototype);

				Point.apply(newPoint,	arguments);

				return	newPoint;

}

var	myPoint	=	createPoint(1,	2);

This	might	seem	like	a	needlessly	complicated	way	of	doing	things.	However,	JavaScript	has	a
special	operator	that	allows	us	to	greatly	simplify	the	previous	code,	as	follows:

function	Point(x,	y)	{

				this.x	=	x;

				this.y	=	y;

}

Point.prototype.isAboveDiagonal	=	function()	{

				return	this.y	>	this.x;

}

var	myPoint	=	new	Point(1,	2);

The	behavior	of	the	new	operator	is	identical	to	our	createPoint	function	in	the	previous
example.	There	is	one	small	exception:	if	the	Point	function	actually	returned	a	value,	then	this
would	be	used	instead	of	newPoint.	It	is	conventional	in	JavaScript	to	start	functions	with	a
capital	letter	if	they	are	intended	to	be	used	with	the	new	operator.

Programming	with	classes

Although	JavaScript	doesn't	really	have	classes,	ES2015	introduces	a	new	class	keyword.	This
makes	it	possible	to	implement	shared	behavior	and	inheritance	in	a	way	that	may	be	more
familiar	compared	to	other	object-oriented	languages.

The	equivalent	of	our	preceding	code	would	look	like	the	following:

class	Point	{

				constructor(x,	y)	{

								this.x	=	x;

								this.y	=	y;

				}

				

				isAboveDiagonal()	{

								return	this.y	>	this.x;

				}

}

var	myPoint	=	new	Point(1,	2);

Note	that	this	really	is	equivalent	to	our	preceding	code.	The	class	keyword	is	just	syntactic
sugar	for	setting	up	the	prototype-based	inheritance	already	discussed.

Class-based	inheritance

As	mentioned	before,	an	object's	prototype	may	in	turn	have	another	prototype,	allowing	a	chain
of	inheritance.	Setting	up	such	a	chain	becomes	quite	complicated	using	the	prototype-based
approach	from	the	previous	section.	It	is	much	more	intuitive	using	the	class	keyword,	as	in	the
following	example	(which	might	be	used	for	plotting	a	graph	with	error	bars):

class	UncertainPoint	extends	Point	{

				constructor(x,	y,	uncertainty)	{

								super(x,	y);

								this.uncertainty	=	uncertainty;

				}

				

				upperLimit()	{

								return	this.y	+	this.uncertainty;

				}

				

				lowerLimit()	{

								return	this.y	-	this.uncertainty;

				}

}

var	myUncertainPoint	=	new	Point(1,	2,	0.5);

Summary
In	this	chapter,	we	have	introduced	JavaScript's	type	system,	understood	functions	as	first-class
objects	in	JavaScript,	seen	how	JavaScript	differs	from	other	object-oriented	languages,
implemented	inheritance	using	prototypes	and	classes,	and	learned	the	new	features	of
ECMAScript	2015	(ES6)	that	make	the	language	safer	and	more	intuitive	to	use.

Now	that	you	have	a	firm	grounding	in	JavaScript,	you	can	start	writing	Node.js	applications	with
confidence.	In	the	next	chapter,	we	will	expand	on	our	Express	project	and	see	how	the	module
system	in	Node.js	allows	us	to	structure	our	codebase.

Chapter	4.	Introducing	Node.js	Modules
Now	that	we're	up	to	speed	with	the	syntax	of	the	JavaScript	language,	we	can	start	building	up
our	application.	To	do	this,	we	need	to	know	how	to	structure	our	application	to	allow	it	to	grow
in	a	maintainable	way.

In	this	chapter,	we	will	cover	the	following	topics:

Structuring	JavaScript	code	with	modules
Declaring	and	using	our	own	modules
Organizing	modules	into	files	and	directories
Implementing	an	Express	middleware	module

Organizing	your	codebase
Most	programming	platforms	provide	several	mechanisms	for	structuring	your	code.	Consider
C#/.NET	or	Java:	you	can	use	classes,	namespaces	or	packages,	and	compilation	units
(assemblies	or	JAR/WAR	files).	Notice	the	range	from	small-scale	organizational	units	(classes)
to	large-scale	ones	(assemblies).	This	allows	you	to	make	a	codebase	more	approachable	by
providing	order	at	each	level	of	detail.

Classic	browser-based	JavaScript	development	was	quite	unstructured.	Functions	were	the	only
built-in	language	feature	for	organizing	your	code.	You	could	split	your	code	into	separate	script
files,	but	these	all	share	the	same	global	context	within	a	web	page.

Over	time,	people	have	developed	ways	of	organizing	JavaScript	code.	The	standard	approach
now	is	to	use	modules.	There	are	a	few	different	module	systems	available	for	JavaScript,	but
they	all	work	in	a	similar	way.	Each	module	system	includes	the	following	aspects:

A	way	of	declaring	a	module	with	a	name	and	its	own	scope
A	way	of	defining	functionality	provided	by	the	module
A	way	of	importing	a	module	into	another	script

In	each	system,	when	you	import	a	module,	you	get	a	plain	JavaScript	object	that	you	can	assign
to	a	variable.	For	most	modules,	this	will	be	an	object	with	several	properties	containing
functions.	But	it	could	be	any	valid	JavaScript	object,	for	example,	a	single	function.

Most	module	systems	expect	or	at	least	encourage	you	to	define	each	module	in	a	separate	file,
just	as	you	would	with	classes	in	other	languages.	It	is	also	common	for	large	modules	to	be
composed	of	other,	smaller,	modules.	These	would	be	grouped	together	under	the	same	directory.
In	this	way,	modules	act	more	like	namespaces	or	packages.

The	flexibility	of	modules	means	that	you	can	use	them	to	structure	your	code	at	different	scales.
The	lack	of	a	built-in	hierarchy	of	organizational	units	in	JavaScript	provides	more	flexibility.	It
also	forces	you	to	think	more	about	how	you	structure	your	code.

JavaScript	module	systems
ECMAScript	2015	introduces	modules	as	a	built-in	feature	of	the	language.	They	have	been
common	practice	for	a	while,	though.	For	client-side	programming,	this	practice	has	relied	on
using	third-party	libraries	to	provide	a	module	system.

You	may	have	seen	RequireJS,	which	provides	a	way	of	using	functions	to	define	modules.
RequireJS	uses	plain	JavaScript	and	works	in	any	environment.	It	is	most	useful	in	the	browser,
where	additional	modules	may	be	loaded	over	the	Internet.	RequireJS	addresses	some	of	the
pitfalls	of	loading	additional	scripts	dynamically	and	asynchronously.

The	Node.js	environment	has	its	own	module	system,	which	we	will	look	at	in	the	rest	of	this
chapter.	It	makes	use	of	the	filesystem	for	organizing	modules.

Tip

You	might	come	across	the	terms	AMD	or	CommonJS.	These	are	standards	for	defining	modules.
RequireJS	is	an	implementation	of	AMD,	and	Node.js	modules	follow	the	CommonJS	standard.
ECMAScript	2015	modules	define	a	new	standard	with	new	export	and	import	language
keywords.	The	syntax	is	quite	similar,	though,	to	the	Node.js	module	system	we'll	be	using	in	this
book,	and	it	is	easy	to	switch	between	the	two.

Creating	modules	in	Node.js
We've	actually	already	used	several	Node.js	modules	and	created	some	of	our	own.	Let's	look
again	at	our	application	from	Chapter	2,	Getting	Started	with	Node.js.

The	following	code	is	from	routes/index.js	and	routes/users.js:

module.exports	=	router;

The	following	is	the	code	from	app.js:

var	express	=	require('express');

var	path	=	require('path');

var	favicon	=	require('serve-favicon');

var	logger	=	require('morgan');

var	cookieParser	=	require('cookie-parser');

var	bodyParser	=	require('body-parser');

var	routes	=	require('./routes/index');

var	users	=	require('./routes/users');

Each	of	our	routes	(index	and	users)	is	a	module.	They	expose	their	functionality	using	the	built-in
module	object,	which	is	defined	by	Node.js	as	a	variable	scoped	to	each	module.	In	the
preceding	example,	the	object	provided	by	each	of	our	route	modules	is	an	Express	router
instance.	The	app.js	script	imports	these	modules	using	the	built-in	require	function.

Observe	that	app.js	also	imports	various	npm	packages	using	require.	Note	that	it	uses	file
paths	to	reference	our	own	modules,	whereas	npm	modules	are	referenced	by	name.

Let's	look	at	how	Node.js	modules	satisfy	the	three	aspects	of	JavaScript	module	functionality.

Declaring	a	module	with	a	name	and	its	own	scope
In	Node.js,	each	separate	JavaScript	file	is	automatically	treated	as	a	new	module.	Unlike	scripts
loaded	into	a	web	page,	each	file	has	its	own	scope.	The	name	of	the	module	is	the	name	of	the
file.

Defining	functionality	provided	by	the	module
Node.js	provides	two	built-in	variables	for	exporting	functionality	from	a	module.	These	are
module.exports	and	exports.	module.exports	is	initialized	to	an	empty	object.	exports	is
just	a	reference	to	module.exports.	It	is	equivalent	to	the	following	appearing	before	your
script:

var	exports	=	module.exports	=	{};

Whatever	is	contained	in	the	module.exports	variable	at	the	end	of	your	script	is	the	exported
value	of	your	module.	This	will	be	returned	whenever	your	module	is	imported	elsewhere.	The
following	are	all	equivalent:

module.exports.foo	=	1;

module.exports.bar	=	2;

module.exports	=	{	foo:	1,	bar:	2	};

exports.foo	=	1;

exports.bar	=	2;

Note	that	the	following	is	not	the	same	as	the	previous	examples.	It	just	reassigns	exports,	but
doesn't	alter	module.exports	at	all:

exports	=	{	foo:	1,	bar:	2	};

Importing	a	module	into	another	script
Node.js	provides	another	built-in	variable	for	importing	modules.	This	is	the	require	function
we	saw	in	app.js	earlier	in	the	chapter.	This	function	is	provided	by	Node.js	and	always
available.	It	takes	a	single	argument,	which	is	the	name	or	path	of	the	module	you	want	to	import.
The	following	excerpts	from	app.js	demonstrate	loading	a	third-party	module	by	name	and	one
of	our	own	modules	by	a	file	path:

var	express	=	require('express');

...

var	routes	=	require('./routes/index');

Note	that	we	don't	need	to	specify	the	.js	file	extension	for	our	own	module.	Node.js	will
automatically	add	this	for	us.

Defining	a	directory-level	module
As	mentioned	at	the	beginning	of	this	chapter,	modules	can	also	act	more	like	namespaces.	We	can
treat	a	whole	directory	as	a	module,	consisting	of	smaller	modules	in	individual	files.	The
simplest	way	to	do	this	is	to	create	an	index.js	file	in	the	directory.

When	calling	require('./directoryName'),	Node.js	will	attempt	to	load	a	file	named
'./directoryName/index.js'	(relative	to	the	current	script).	There	is	nothing	special	about
index.js	itself.	This	is	just	another	script	file	that	exposes	an	entry	point	to	the	module.	If
directoryName	contains	a	package.json	file,	Node.js	will	load	this	file	first	and	see	if	it
specifies	a	main	script,	in	which	case	Node.js	will	load	this	script	instead	of	looking	for
index.js.

To	import	local	modules,	we	use	a	file	or	directory	path,	that	is,	something	starting	with	'/',
'../',	or	'./'	as	in	the	preceding	example.	If	we	call	require	with	a	plain	string,	Node.js
treats	it	as	relative	to	the	node_modules	folder.	The	npm	packages	are	just	directory-level
modules	under	this	folder.	We	will	look	at	defining	our	own	npm	packages	in	more	detail	in	a
later	chapter.

Implementing	an	Express	middleware	module
Let's	return	to	the	Node.js	application	we	started	in	Chapter	2,	Getting	Started	with	Node.js.
We're	going	to	write	an	application	where	users	can	set	puzzles	for	one	another.	First	of	all,	we'll
need	a	way	of	identifying	the	current	user.	We'll	need	to	do	this	on	most	requests,	making	it	a
cross-cutting	concern.	This	is	a	good	use	case	for	middleware.

For	now,	we	will	implement	users	in	the	simplest	way	possible,	just	storing	an	ID	in	a	cookie.	We
will	look	into	more	robust	identification	in	a	later	chapter.	Note,	however,	that	our	use	of
middleware	means	it	will	be	easy	to	alter	our	approach	later	on.	This	concern	is	encapsulated	in
our	user	middleware,	so	we	only	need	to	change	it	in	one	place.

First,	we	need	a	way	of	generating	unique	IDs.	For	this,	we	will	use	the	UUID	module	from	npm.
We	can	add	this	to	our	project	by	running	the	following	on	the	command	line:

>	npm	install	uuid	--save

The	--save	flag	stores	the	name	of	this	module	in	our	package.json	file	so	that	it	will	be
installed	automatically	by	npm	install.	This	is	useful	for	restoring	our	application	from	a	clean
checkout	of	the	source	code	(recall	that	people	commonly	exclude	the	node_modules	directory
from	source	control,	precisely	because	it	can	easily	be	restored	in	this	way).

Now	we	are	ready	to	create	our	middleware,	which	will	place	under	middleware/users.js:

'use	strict';

const	uuid	=	require('uuid');

module.exports	=	function(req,	res,	next)	{

				let	userId	=	req.cookies.userId;

				if	(!userId)	{

								userId	=	uuid.v4();

								res.cookie('userId',	userId);

				}

				req.user	=	{

								id:	userId

				};

				next();

};

Notice	that	we	use	the	ES2015	const	keyword	for	the	uuid	module	because	this	reference	never
changes.	But	we	use	the	let	keyword	for	the	userId	variable	because	this	can	be	reassigned.
Also	notice	that	we	call	next()	rather	than	returning	a	response,	so	the	next	middleware	can
continue	processing	the	request.

Finally,	we	need	to	add	this	middleware	to	our	application	in	app.js:

var	users	=	require('./middleware/users');

var	routes	=	require('./routes/index');

var	app	=	express();

...

app.use(users);

app.use('/',	routes);

...

Note	that	this	replaces	the	import	and	usage	of	the	./routes/users	module	that	was	generated
for	us.	This	route	wasn't	particularly	useful,	but	we	will	add	more	routes	soon.

We	can	check	that	our	middleware	works	by	altering	our	index	route	and	view	as	follows:

routes/index.jsrouter.get('/',	function(req,	res,	next)	{

		res.render('index',	{	title:	'Welcome',	userId:	req.user.id	});

});

The	following	is	the	code	views/index.hjs:

		<body>

				<h1>{{	title	}}</h1>

				<p>Your	user	ID	is	{{	userId	}}.</p>

		</body>

Launch	the	application	and	visit	http://localhost:3000/.	You	should	see	a	randomly-
generated	user	ID.	Refresh	the	page	and	you	should	retain	the	same	ID.	Open	the	site	in	a	different
browser	(or	an	incognito/private	browsing	window).	This	separate	browser	session	should	see	a
different	ID.

Summary
In	this	chapter,	we	have	seen	how	to	use	Node.js	modules	to	structure	our	codebase,	and	how	to
create	an	Express	middleware	module	to	implement	cross-cutting	concerns.

Now	that	we	have	a	way	of	structuring	our	codebase	and	a	means	of	identifying	users,	we	can	get
on	with	implementing	our	application's	functionality.	In	the	next	chapter,	we'll	start	adding	some
interactivity	to	our	application.

Chapter	5.	Creating	Dynamic	Websites
Now	that	we	have	established	a	basic	structure	for	our	application,	we	can	start	to	add	more
functionality	and	build	a	dynamic	website	that	responds	to	user	input.

In	this	chapter,	we	will	cover	the	following	topics:

Adding	a	new	module	to	our	application	for	storing	and	deleting	data
Exposing	a	JSON	API	to	handle	user-submitted	data
Implementing	communication	between	the	client	and	server	using	Ajax
Building	up	more	complex	HTML	views	using	partial	templates

Handling	user-submitted	data
We're	going	to	implement	the	classic	guessing	game	of	Hangman	(see
https://en.wikipedia.org/wiki/Hangman_(game)).	Users	will	be	able	to	post	new	words	to	guess,
and	to	guess	words	posted	by	others.	We'll	look	at	creating	new	games	first.

First,	we'll	add	a	new	module	for	managing	our	games.	For	now,	we'll	just	store	our	games	in	the
memory.	If	we	want	to	put	games	in	some	persistent	storage	in	future,	this	is	the	module	we	will
change.	The	interface	(that	is,	the	functions	added	to	module.exports)	can	remain	the	same
though.

We	add	the	following	code	under	services/games.js:

'use	strict';

const	games	=	[];

let	nextId	=	1;

class	Game	{

				constructor(id,	setBy,	word)	{

								this.id	=	id;

								this.setBy	=	setBy;

								this.word	=	word.toUpperCase();

				}

}

module.exports.create	=	(userId,	word)	=>	{

				const	newGame	=	new	Game(nextId++,	userId,	word);	

				games.push(newGame);

				return	newGame;

}

module.exports.get	=

		(id)	=>	games.find(game	=>	game.id	===	parseInt(id,	10));

Now	let's	go	through	our	application	from	the	top	down.	In	our	index	view	(views/index.hjs),
we'll	add	simple	a	HTML	form	for	creating	a	new	game.

		<body>

				<h1>{{	title	}}</h1>

				<form	action="/games"	method="POST">

						<input	type="text"	name="word"

													placeholder="Enter	a	word	to	guess..."	/>

						<input	type="submit"	/>

				</form>

		<body>

When	submitted,	this	form	will	make	a	POST	request	to	/games.	At	the	moment,	this	would	return
a	404	error	since	we	have	nothing	mounted	at	that	route	(you	can	try	this	in	a	browser	it	if	you
like).	We	can	add	a	new	games	route	to	handle	this	request.	We	add	the	following	code	under
routes/games.js:

https://en.wikipedia.org/wiki/Hangman_(game)

'use	strict';

const	express	=	require('express');

const	router	=	express.Router();

const	service	=	require('../services/games');

router.post('/',	function(req,	res,	next)	{

				const	word	=	req.body.word;

				if	(word	&&	/^[A-Za-z]{3,}$/.test(word))	{

								service.create(req.user.id,	word);

								res.redirect('/');

				}	else	{

								res.status(400).send('Word	must	be	at	least	three	characters	long	and	

contain	only	letters');

				}

});

module.exports	=	router;

There	is	quite	a	lot	going	on	in	our	new	routing	middleware:

router.post	creates	a	handler	for	an	HTTP	POST	request.
req.body	contains	form	values,	thanks	to	the	bodyParser	middleware	in	app.js.
req.user.id	contains	the	current	user,	thanks	to	our	users	middleware.
res.redirect()	issues	a	redirect	to	reload	the	page.	It	is	important	to	always	issue	a
redirect	after	a	successful	POST	request.	This	avoids	duplicate	form	submissions.
res.status()	sets	an	alternative	HTTP	status	code	for	the	response,	in	this	case	a	400	for	a
validation	failure.

Our	route	looks	for	a	field	named	word	in	the	request	body.	It	then	checks	this	field	is	defined	and
not	empty	(both	undefined	and	the	empty	string	are	falsey	in	JavaScript,	so	they	behave	as	false	in
conditional	tests).	It	also	checks	that	the	field	matches	a	regular	expression	specifying	our	validity
rule.

Finally,	the	route	makes	use	of	our	service	module	to	actually	create	the	new	game.	It	is	common
practice	for	routing	middleware	to	delegate	application	logic	to	other	modules.	Its	main
responsibility	is	to	define	the	HTTP	interface	of	the	application.	Other	modules	are	responsible
for	implementing	the	actual	application	logic.	In	this	way,	our	routes	and	middleware	are
comparable	to	controllers	in	MVC	frameworks.

We	also	need	to	mount	this	route	at	the	/games	path.	The	following	code	is	from	app.js:

var	routes	=	require('./routes/index');

var	games	=	require('./routes/games');

...

app.use('/',	routes);

app.use('/games',	games);

Communicating	via	Ajax
Having	created	a	game,	we	need	a	way	of	playing	it.	Since	the	whole	point	of	a	guessing	game	is
that	the	word	is	secret,	we	don't	want	to	send	the	whole	word	to	the	client.	Instead,	we	just	want
to	let	clients	know	the	length	of	the	word	and	provide	a	way	for	them	to	verify	their	guesses.

To	do	this,	we'll	first	need	to	expand	our	games	service	module:

class	Game	{

				constructor(id,	setBy,	word)	{

								this.id	=	id;

								this.setBy	=	setBy;

								this.word	=	word.toUpperCase();

				}

				

				positionsOf(character)	{

								let	positions	=	[];

								for	(let	i	in	this.word)	{

												if	(this.word[i]	===	character.toUpperCase())	{

																positions.push(i);

												}

								}

								return	positions;

				}

}

Now	we	can	add	two	new	routes	to	our	games	route:

const	checkGameExists	=	function(id,	res,	callback)	{

				const	game	=	service.get(id);

				if	(game)	{

								callback(game);

				}	else	{

								res.status(404).send('Non-existent	game	ID');

				}

}

router.get('/:id',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	res.render('game',	{

												length:	game.word.length,

												id:	game.id

								}));

});

router.post('/:id/guesses',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{

												res.send({

																positions:	game.positionsOf(req.body.letter)

												});

								}

);

});

These	two	routes	make	use	of	a	shared	function	for	retrieving	the	game	and	returning	a	404	status
code	if	it	does	not	exist.	The	GET	handler	renders	a	view,	as	with	our	index	route.	The	POST
handler	calls	res.send(),	passing	in	a	JavaScript	object.	Express	will	automatically	turn	this
into	a	JSON	response	to	the	client.	This	makes	it	very	easy	to	build	JSON-based	APIs	in	express.

We'll	now	create	a	view	and	client-side	script	for	communicating	with	this	API.	We	add	the
following	code	under	views/game.hjs:

<!DOCTYPE	html>

<html>

		<head>

				<title>Hangman	-	Game	#{{id}}</title>

				<link	rel="stylesheet"	href="/stylesheets/style.css"	/>

				<script	

src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.3/jquery.min.js">

</script>

				<script	src="/scripts/game.js"></script>

				<base	href="/games/{{	id	}}/">

		</head>

		<body>

				<h1>Hangman	-	Game	#{{id}}</h1>

				<h2	id="word"	data-length="{{	length	}}"></h2>

				<p>Press	letter	keys	to	guess</p>

				<h3>Missed	letters:</h3>

				<p	id="missedLetters"></p>

		</body>

</html>

We	add	the	following	code	under	public/scripts/game.js:

$(function()	{

				'use	strict';

				

				var	word	=	$('#word');

				var	length	=	word.data('length');

				

				//	Create	placeholders	for	each	letter

				for	(var	i	=	0;	i	<	length;	++i)	{

								word.append('_');

				}

				

				var	guessedLetters	=	[];

				var	guessLetter	=	function(letter)	{

								$.post('guesses',	{	letter:	letter	})

												.done(function(data)	{

																if	(data.positions.length)	{

																				data.positions.forEach(function(position)	{

																								word.find('span').eq(position).text(letter);

																				});

																}	else	{

																				$('#missedLetters')

																								.append(''	+	letter	+	'');

																}

												});

				}

				

				$(document).keydown(function(event)	{

								//	Letter	keys	have	key	codes	in	the	range	65-90

								if	(event.which	>=	65	&&	event.which	<=	90)	{

												var	letter	=	String.fromCharCode(event.which);

												if	(guessedLetters.indexOf(letter)	===	-1)	{

																guessedLetters.push(letter);

																guessLetter(letter);

												}

								}

				});

});

Note	that	in	the	client-side	script	we	drop	back	to	the	ECMAScript	5	standard	(for	example,	var
instead	of	let,	and	no	arrow	function).	This	ensures	the	widest	possible	compatibility.	The	latest
versions	of	all	mainstream	browsers	would	support	the	elements	of	ES2015	syntax	that	we've
been	using	so	far	though.

Also	note	that	we	don't	have	Node.js	modules	available	on	the	client	side.	We	fall	back	to
wrapping	our	code	in	a	function	to	isolate	the	scope.	We'll	look	at	ways	to	make	client-side	code
more	modular	in	a	later	chapter.

Our	client-side	script	uses	jQuery.	We	won't	go	into	detail	on	client-side	frameworks,	but	it's
worth	quickly	explaining	the	features	used	here.	The	jQuery	library	provides	a	consistent	API	for
DOM	manipulation	that	works	across	all	browsers,	as	well	as	a	number	of	useful	tools	for	client-
side	functionality.

The	main	jQuery	API	is	available	through	the	$	object,	which	is	a	function.	The	first	thing	our
script	does	is	call	$	and	pass	it	a	callback,	which	jQuery	will	execute	once	the	page	has	finished
loading.	Our	other	calls	to	$	pass	in	a	string	or	a	DOM	element.	Strings	are	interpreted	as	a	CSS
selector	for	choosing	elements.	In	both	cases,	$	returns	a	wrapper	around	a	set	of	DOM	elements
with	some	useful	methods,	for	example:

The	data	method	allows	us	to	read	the	elements'	data-	attributes
The	append	method	allows	us	to	add	new	child	elements
Methods	such	as	keydown	allow	us	to	bind	handler	functions	for	events

There	are	also	some	utility	methods	defined	on	the	$	object	itself.	These	are	more	like	static
methods	and	don't	relate	to	a	specific	DOM	element.	The	post()	method	is	an	example	of	this.

Our	script	uses	jQuery's	post()	method	to	issue	an	Ajax	POST	request.	This	returns	an	object
with	a	done()	method,	to	which	we	can	pass	a	callback	to	be	executed	when	the	request
completes.	Here,	we	can	make	use	of	the	JSON	data	returned	by	our	API.	In	this	case,	we	fill	in

any	positions	that	match	our	guessed	letter.

If	we	run	the	application	at	this	point,	we	have	a	(very)	minimal	working	game.	First,	visit
http://localhost:3000/	and	create	a	new	game	by	submitting	a	valid	word.	Then	visit
http://localhost:3000/games/1	to	play.	It	should	look	something	like	the	following:

Implementing	other	data	operations
So	far,	we	have	seen	how	to	create	or	retrieve	a	single	game,	or	submit	a	single	guess	for	a	game.
Applications	also	commonly	need	to	list	data	or	delete	entries.	The	principles	here	are	much	the
same	as	we've	seen	already.	But	to	implement	these	operations,	we'll	need	some	new	syntax.

Listing	data	in	views
Let's	first	allow	users	to	see	a	list	of	games	they've	created	or	that	have	been	created	by	others.
Our	chosen	view	engine,	Hogan,	is	based	on	Mustache,	which	has	a	very	simple	syntax	for
displaying	lists.	We	can	add	these	two	lists	to	our	index.hjs	view,	as	follows:

				<h2>Games	created	by	you</h2>

				<ul	id="createdGames">

						{{#createdGames}}

								{{word}}

						{{/createdGames}}

				

				<h2>Games	available	to	play</h2>

				<ul	id="availableGames">

						{{#availableGames}}

								#{{id}}

						{{/availableGames}}

				

In	order	to	populate	these	lists,	we'll	need	a	couple	of	new	methods	in	our	games.js	service
module:

module.exports.createdBy	=

		(userId)	=>	games.filter(game	=>	game.setBy	===	userId);

module.exports.availableTo	=

		(userId)	=>	games.filter(game	=>	game.setBy	!==	userId);

Finally,	we'll	need	to	expose	these	to	our	index	view	from	our	route:

var	express	=	require('express');

var	router	=	express.Router();

var	games	=	require('../services/games');

router.get('/',	function(req,	res,	next)	{

		res.render('index',	{

				title:	'Hangman',

				userId:	req.user.id,

				createdGames:	games.createdBy(req.user.id),

				availableGames:	games.availableTo(req.user.id)

		});

});

module.exports	=	router;

Now,	our	index	page	shows	games	created	by	the	current	user	and	provides	convenient	links	to
games	created	by	others.	You	can	experiment	with	this	functionality	by	using	two	separate
browser	sessions	again	to	visit	http://localhost:3000.	The	result	should	look	something	like
the	following:

Issuing	a	delete	request	from	the	client
To	allow	users	to	remove	games	that	they	have	created,	we'll	first	need	to	add	a	method	to	our
Game	class:

class	Game	{

				constructor(id,	setBy,	word)	{

								this.id	=	id;

								this.setBy	=	setBy;

								this.word	=	word.toUpperCase();

				}

				

				positionsOf(character)	{

								let	positions	=	[];

								for	(let	i	in	this.word)	{

												if	(this.word[i]	===	character.toUpperCase())	{

																positions.push(i);

												}

								}

								return	positions;

				}

				

				remove()	{

								games.splice(games.indexOf(this),	1);

				}

}

Next	we	can	create	a	new	handler	for	delete	requests	in	our	games	route:

router.delete('/:id',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{

												if	(game.setBy	===	req.user.id)	{

																game.remove();

																res.send();

												}	else	{

																res.status(403).send(

																				'You	don't	have	permission	to	delete	this	game'

);

												}

								}

);

});

Finally,	we	can	make	use	of	this	from	the	client.	The	following	code	is	from	views/index.hjs:

		<head>

				<title>{{	title	}}</title>

				<link	rel="stylesheet"	href="/stylesheets/style.css"	/>

				<script	

src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.3/jquery.min.js">

</script>

				<script	src="/scripts/index.js"></script>

		</head>

		...

						{{#createdGames}}

								<li	class="game">

										{{word}}

										(delete)

								

						{{/createdGames}}

We	add	the	following	code	under	public/scripts/index.js:

$(function()	{

				'use	strict';

				

				$('#createdGames').on('click',	'.delete',	function()	{

								var	$this	=	$(this);

								$.ajax($this.attr('href'),	{

												method:	'delete'

								}).done(function()	{

												$this.closest('.game').remove();

								});

								event.preventDefault();

				});

});

Note	that,	unlike	GET	and	POST,	jQuery	has	no	convenience	function	for	delete	requests.	So	we
drop	back	to	the	lower	level	.ajax()	function	and	specify	the	HTTP	method	explicitly.

If	you	visit	the	application	in	a	browser	and	create	a	new	game	again,	you	should	now	see	a	link
to	delete	the	game.

Splitting	up	Express	views	using	partials
Deleting	a	game	does	not	cause	the	page	to	refresh,	but	creating	a	new	game	does.	We	can	fix	this
by	creating	games	via	an	Ajax	call,	consistent	with	how	we	delete	games.	In	order	for	this	to
work,	the	client-side	script	that	handles	the	call	needs	to	know	which	HTML	to	add	to	the	page
when	a	new	game	is	created.

We	could	repeat	the	HTML	structure	of	the	view	within	the	client-side	JavaScript.	However,	it
would	be	better	for	the	server	to	return	the	correct	HTML	fragment,	and	to	reuse	the	same
template	for	this	as	it	uses	it	to	render	the	list	on	the	page	initially.

We	can	do	this	by	splitting	the	HTML	structure	for	a	game	within	the	list	into	a	partial	view.	This
is	a	view	template	for	an	HTML	fragment	rather	than	a	complete	page.	We	add	the	following	code
under	views/createdGame.hjs:

<li	class="game">

		{{word}}

		(delete)

With	the	view	engine	that	we're	using	(Hogan),	we	need	to	let	views	know	about	available
partials	when	rendering	them	(other	view	engines	allow	partials	to	be	resolved	automatically).
The	following	code	is	from	routes/index.js:

		res.render('index',	{

				title:	'Hangman',

				userId:	req.user.id,

				createdGames:	games.createdBy(req.user.id),

				availableGames:	games.availableTo(req.user.id),

				partials:	{	createdGame:	'createdGame'	}

		});

We	can	use	the	partial	within	our	main	view	as	follows.	We'll	also	add	IDs	to	our	HTML
elements,	which	we	will	reference	from	our	client-side	JavaScript	shortly.	The	following	code	is
from	views/index.hjs:

				<form	action="/games"	method="POST"	id="createGame">

						<input	type="text"	name="word"	id="word"

													placeholder="Enter	a	word	to	guess..."	/>

						<input	type="submit"	/>				</form>

				<h2>Games	created	by	you</h2>		

				<ul	id="createdGames">

						{{#createdGames}}

								{{>	createdGame}}

						{{/createdGames}}

				

Now	we	can	update	our	games	route	to	return	only	this	fragment	to	the	client	when	creating	a	new
game.	The	following	code	is	from	routes/games.js:

router.post('/',	function(req,	res,	next)	{

				let	word	=	req.body.word;

				if	(word	&&	/^[A-Za-z]{3,}$/.test(word))	{

								const	game	=	service.create(req.user.id,	word);	

								res.redirect(`/games/${game.id}/created`);

				}	else	{

								...

				}

});

...

router.get('/:id/created',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	res.render('createdGame',	game));

});

Finally,	we	can	make	use	of	this	in	our	client-side	script.	The	following	code	is	from
public/scripts/index.js:

$(function()	{

		'use	strict';				

		$('#createGame').submit(function(event)	{

				$.post($(this).attr('action'),	{	word:	$('#word').val()	},

						function(result)	{

								$('#createdGames').append(result);

						});

			event.preventDefault();

		});

		...

});

Summary
In	this	chapter,	we	have	started	building	out	our	own	application	by	creating	new	middleware	and
service	modules.	We've	read	user-submitted	data	from	forms	and	acted	on	it.	We've	implemented
a	JSON	API	on	the	server	side	and	communicated	with	this	from	the	client	using	Ajax.	We've
used	partial	views	to	render	common	components.

So	far,	we've	seen	how	to	write	JavaScript	code	and	implement	various	functionality	in	Node.js.
This	is	good	for	prototyping,	but	isn't	enough	for	a	maintainable	project.	It's	also	important	to
write	automated	tests	for	our	code,	which	is	the	subject	of	the	next	chapter.

Chapter	6.	Testing	Node.js	Applications
So	far,	we	have	only	been	testing	our	code	by	exercising	it	manually.	This	isn't	a	very	sustainable
approach	as	our	application	becomes	larger.	Ideally,	we	should	regularly	exercise	all	the
functionality	of	our	application	to	check	for	regressions.	This	would	quickly	become
prohibitively	time-consuming	if	we	continued	to	use	only	manual	testing.	It	is	much	more	effective
to	maintain	a	suite	of	automated	tests.	These	also	bring	many	other	benefits,	for	example,	acting	as
documentation	of	our	code	for	other	developers.

In	this	chapter,	we	will	cover	the	following	topics:

Writing	automated	unit	tests	for	our	application
Introducing	new	libraries	to	help	us	write	more	descriptive	tests
Seeing	how	to	create	and	use	test	doubles	in	JavaScript
Exercising	our	application's	web	interface	using	HTTP	client	tests
Adding	full-stack	integration	tests	using	browser	automation
Establishing	a	structure	for	writing	further	tests	as	we	expand	our	codebase

Writing	a	simple	test	in	Node.js
Node.js	comes	with	a	built-in	module	called	assert	that	can	be	used	for	testing.	We	can	use	it	to
write	a	simple	test	for	the	games	service	that	we	wrote	in	Chapter	5	,	Building	Dynamic
Websites.	We	add	the	following	code	under	gameServiceTest.js:

'use	strict';

let	assert	=	require('assert');

let	service	=	require('./services/games.js')

//	Given

service.create('firstUserId',	'testing');

//	When

let	games	=	service.availableTo('secondUserId');

//	Then												

assert.equal(games.length,	1);												

let	game	=	games[0];

assert.equal(game.setBy,	'firstUserId');

assert.equal(game.word,	'TESTING');

Note	that	the	assert.equal	function	takes	the	actual	value	as	the	first	argument	and	the	expected
value	as	the	second	argument.	This	is	the	opposite	way	around	to	JUnit's	built-in	Assert.Equals,
and	the	classic-style	Assert.AreEqual	in	NUnit.	It's	important	to	get	these	parameters	the	right
way	around	so	that	they	appear	correctly	in	error	messages	when	an	assertion	fails.

Tip

Given,	When,	Then

The	Given,	When,	and	Then	comments	in	the	preceding	test	are	not	specific	to	JavaScript	or	any
of	the	test	frameworks	we'll	be	using,	but	are	generally	a	good	tool	for	structuring	tests	to	keep
them	focused	and	readable.

We	can	now	verify	our	code	using	the	following	command:

>	node	gameServiceTest.js

>	echo	%errorlevel%

An	exit	code	of	0	indicates	that	our	test	completed	successfully	without	any	errors.	Although	we
haven't	been	following	test-driven	development	(writing	a	failing	test	first	before	adding	any	new
code),	it's	still	important	to	see	each	test	fail	to	confirm	that	it's	testing	something.	Try	altering	the
availableTo	function	in	services/games.js	to	return	an	empty	array,	and	run	the	test	again.

Not	only	do	we	now	get	a	non-zero	exit	code,	but	we	also	get	an	error	containing	our	assertion
failure.	Our	test	output	still	isn't	particular	compelling,	though.	Also,	the	lack	of	structure	in	our
test	script	will	make	it	harder	to	navigate	as	we	add	more	tests.	We	can	address	both	of	these

issues	by	making	use	of	one	of	the	testing	libraries	available	for	JavaScript.

Structuring	the	codebase	for	tests
As	we	write	more	tests	for	our	application,	we'll	benefit	from	having	more	structure	to	our	tests.
It's	common	to	have	at	least	one	test	file	per	production	module.	It	will	also	be	useful	to	have	a
way	of	running	all	of	our	tests	and	seeing	the	overall	result.

We're	going	to	start	adding	tests	under	a	test	directory.	From	this	point	on	in	the	book,	we're	also
going	to	keep	all	of	our	application	code	under	a	src	directory.	This	will	make	it	easier	to
navigate	our	codebase	and	to	keep	production	and	test	code	separate.

If	you're	following	along	with	the	book	at	this	point,	you	should	move	app.js	and	all	the	folders
(apart	from	the	bin	folder)	under	a	new	src	directory,	and	update	the	startup	script	as	follows	in
bin/www:

var	app	=	require('../src/app');

var	debug	=	require('debug')('hangman:server');

var	http	=	require('http');

Writing	BDD-style	tests	with	Mocha
From	C#	or	Java,	you	may	be	most	familiar	with	the	xUnit-style	of	tests	used	by	NUnit,	JUnit,	and
so	on.	This	style	structures	tests	into	classes,	and	turns	method	names	into	test	names.	This	can	be
a	bit	restrictive,	and	isn't	common	in	JavaScript	testing.	JavaScript	test	frameworks	make	use	of
the	less	structured,	and	more	dynamic,	nature	of	the	language	to	allow	more	flexibility.

There	are	several	different	styles	for	writing	tests	in	JavaScript.	The	most	common	is	the	so-
called	behavior-driven	development	(BDD)	style	in	which	we	describe	the	behavior	of	our
application	in	plain	English.	This	is	the	default	style	of	the	most	popular	JavaScript	testing
frameworks.	It	is	also	common	in	frameworks	for	other	programming	platforms,	most	notably
RSpec	for	Ruby.

We'll	be	using	a	popular	test	framework	named	Mocha.	Let's	first	add	this	to	our	application:

>	npm	install	mocha	--save-dev

Note	that	--save-dev	adds	Mocha	to	our	package.json	file	as	a	development	dependency.
This	indicates	that	it's	not	needed	in	our	production	code,	and	npm	doesn't	need	to	install	it	in
production	environments.	We'll	also	update	this	file	to	let	npm	run	our	tests	using	Mocha,	by
adding	a	test	script	as	follows:

		"scripts":	{

				"start":	"node	./bin/www",

				"test":	"node	node_modules/mocha/bin/mocha	test/**/*.js"

		},

This	tells	npm	to	execute	scripts	under	the	/test/	directory	as	tests	using	Mocha	when	we	run
npm	test	from	the	command	line.

Note

Mocha	and	Jasmine

There	are	a	large	number	of	different	testing	frameworks	available	for	JavaScript.	The	most	well-
established	are	Jasmine	and	Mocha.	They	have	comparable	features	and	both	support	the	same
syntax	for	writing	tests.	They	are	both	well-documented,	and	switching	between	the	two	is	easy.

Jasmine	was	originally	aimed	more	at	testing	client-side	JavaScript	in	the	browser.	Mocha	was
originally	more	focused	on	testing	server-side	Node.js	code.

Nowadays,	both	frameworks	are	well-suited	for	either	environment.	Jasmine	also	has	more
batteries	included,	which	can	make	it	quicker	to	get	started	with.	Mocha	delegates	more	features
to	other	libraries,	giving	the	user	more	choice	about	how	they	prefer	to	write	tests.

Now	we	just	need	to	add	some	tests!	Mocha	provides	global	functions	named	describe	and	it
for	structuring	our	tests.	These	functions	each	take	two	arguments:	a	string	describing	the	behavior

of	our	application	and	a	callback	defining	the	tests	for	that	behavior.	The	following	code	snippet
shows	our	previous	test	rewritten	using	Mocha.	We	add	the	following	code	under
test/services/games.js:

'use	strict';

const	assert	=	require('assert');

const	service	=	require('../../src/services/games.js');

describe('Game	service',	()	=>	{

				const	firstUserId	=	'user-id-1';

				const	secondUserId	=	'user-id-2';

								

				describe('list	of	available	games',	()	=>	{	

								it('should	include	games	set	by	other	users',	()	=>	{

												//	Given

												service.create(firstUserId,	'testing');

												

												//	When

												const	games	=	service.availableTo(secondUserId);

												

												//	Then

												assert.equal(games.length,	1);

												const	game	=	games[0];

												assert.equal(game.setBy,	firstUserId);

												assert.equal(game.word,	'TESTING');

								});

				});

});

Now	try	running	the	previous	test	using	npm	test.	You	should	see	output	like	the	following	(the
exact	appearance	will	depend	on	what	console	you	are	using):

Note	how	we	get	a	much	more	descriptive	output	of	our	tests.	Also	note	the	use	of	nested	describe
callbacks	in	our	test	to	build	up	a	description	of	our	application.	The	benefit	of	this	becomes
clearer	as	we	add	more	tests.	Try	adding	the	following	test	after	the	first	test:

				it('should	not	include	games	set	by	the	same	user',	()	=>	{

								//	Given

								service.create(firstUserId,	'first');

								service.create(secondUserId,	'second');

								

								//	When

								const	games	=	service.availableTo(secondUserId);

								

								//	Then

								assert.equal(games.length,	1);

								const	game	=	games[0];

								assert.notEqual(game.setBy,	secondUserId);

				});

Run	the	tests	again	using	npm	test.	This	time,	we	get	a	test	failure	from	Mocha:

Resetting	state	between	tests
Our	second	test	fails	because	it	retrieves	two	games	from	the	service.	But	this	is	not	because	our
production	code	is	failing	to	filter	games	correctly.	In	fact,	there	are	two	games	created	by	the
first	user.	One	of	these	has	been	carried	over	from	the	previous	test.

It's	important	for	tests	to	be	independent	and	isolated	from	each	other.	To	this	end,	we	need	to
clean	up	any	state	between	tests.	In	this	case,	we	want	to	delete	all	the	games	we	created.	The
games	service	doesn't	give	us	a	method	for	clearing	all	games.	We	can	only	remove	individual
games	after	retrieving	them.	There	are	a	few	options	available	to	us	here:

We	could	keep	track	of	all	the	games	we	create	during	each	test	and	delete	them	all	at	the
end.	This	might	seem	the	most	obvious	solution,	but	it's	a	bit	fragile.	It	would	be	easy	to	miss
a	single	game	that	might	cause	confusing	test	failures	later.
We	could	rewrite	the	games	service	module	to	export	a	function	for	creating	a	new	service,
and	instantiate	a	new	service	for	each	test.	In	general,	it's	a	good	idea	to	try	and	isolate	tests
by	creating	fresh	objects	under	each	test.	However,	this	is	only	useful	if	the	object	doesn't
store	any	external	state.	We	may	well	want	to	change	the	implementation	of	the	games
service	later,	to	store	data	externally	in	a	persistent	datastore.
We	could	add	a	clear	method	to	the	games	service	to	wipe	out	all	its	data.	It's	not	wrong	to
create	methods	like	this	for	the	purposes	of	supporting	tests.	However,	it's	preferable	to
interact	with	the	application	via	its	existing	API	if	possible.

The	games	service	does	offer	a	way	of	retrieving	all	current	games.	We	just	need	to	pass	in	a	user
ID	that	doesn't	match	the	setter	of	any	game.	We	can	then	go	through	and	delete	all	games.	We
want	to	do	this	before	every	test,	which	we	can	do	using	Mocha's	beforeEach	hook:

describe('Game	service',	()	=>	{

				const	firstUserId	=	'user-id-1';

				const	secondUserId	=	'user-id-2';

				

				beforeEach(()	=>	{

								let	gamesCreated	=	service.availableTo("not-a-user");

								gamesCreated.forEach(game	=>	game.remove());

				});

								

				describe('list	of	available	games',	()	=>	{				

If	we	re-run	our	tests,	they	now	both	pass	correctly.	There	is	also	an	afterEach	hook	in	Mocha,
which	we	could	have	used	instead.	This	would	have	worked,	but	it's	safer	for	tests	to	defend
themselves	by	cleaning	up	first,	rather	than	relying	on	other	tests	to	clean	up	after	themselves.

Using	Chai	for	assertions
Another	way	to	make	our	tests	more	descriptive	is	how	we	write	our	assertions.	Although	the
built-in	Node.js	assert	module	has	been	useful	so	far,	it	is	a	bit	limited.	It	only	contains	a	small
number	of	simple	methods	for	basic	assertions.

You	may	have	experience	of	Fluent	Assertions	or	NUnit's	Constraint	model	in	.NET,	or	AssertJ	in
Java.	Compared	to	these,	the	Node.js	assert	module	might	seem	quite	primitive.

There	are	several	assertion	frameworks	available	for	JavaScript.	We'll	be	using	Chai
(http://chaijs.com),	which	supports	three	different	styles	for	writing	assertions.	The	assert	style
follows	the	traditional	xUnit	assertions,	as	in	JUnit,	or	the	classic	model	of	NUnit.	The	should
and	expect	styles	provide	a	natural	language	interface	for	building	more	descriptive	assertions.

Any	of	these	styles	is	a	perfectly	valid	choice	for	writing	test	assertions.	The	important	thing	is	to
pick	a	style	for	your	codebase	and	use	it	consistently.	We	will	be	using	Chai's	expect	syntax
throughout	this	book.	This	is	one	of	the	more	common	styles	in	JavaScript	testing.	The	Jasmine
test	framework	has	built-in	assertions	that	follow	a	similar	style.

Let's	first	install	Chai	by	running	the	following	on	the	command	line:

>	npm	install	chai	--save-dev

Then	update	our	tests	to	use	it:

const	expect	=	require('chai').expect;

const	service	=	require('../../src/services/games.js');

...

				it('should	include	games	created	by	other	users',	()	=>	{

								//	Given

								service.create(firstUserId,	'testing');

								

								//	When

								const	games	=	service.availableTo(secondUserId);

								

								//	Then

								expect(games.length).to.equal(1);

								const	game	=	games[0];

								expect(game.setBy).to.equal(firstUserId);

								expect(game.word).to.equal('TESTING');

				});

				

				it('should	not	include	games	created	by	the	same	user',	()	=>	{

								//	Given

								service.create(firstUserId,	'first');

								service.create(secondUserId,	'second');

								

								//	When

http://chaijs.com

								const	games	=	service.availableTo(secondUserId);

								

								//	Then

								expect(games.length).to.equal(1);

								let	game	=	games[0];

								expect(game.setBy).not.to.equal(secondUserId);

				});

The	change	isn't	particularly	dramatic	at	this	point	as	we're	only	making	simple	assertions.	But	the
natural	language	interface	will	allow	us	to	specify	more	detailed	assertions	in	a	descriptive	way.

Creating	test	doubles
There	are	more	tests	we	could	write	for	the	games	service,	but	let's	look	at	a	different	module	for
now.	How	would	we	go	about	testing	our	users	middleware?	The	following	code	is	from
middleware/users.js:

module.exports	=	function(req,	res,	next)	{

				let	userId	=	req.cookies.userId;

				if	(!userId)	{

								userId	=	uuid.v4();

								res.cookie('userId',	userId);

				}

				req.user	=	{

								id:	userId

				};

				next();

};

In	order	to	test	this	class,	we	will	need	to	pass	in	arguments	for	the	req,	res,	and	next
parameters	with	which	our	code	interacts.	We	don't	have	a	real	request,	response,	or	middleware
pipeline	available,	so	we	need	to	create	some	stand-in	values	instead.	Stand-in	values	such	as
this	are	generally	called	test	doubles.	Our	code	reads	an	attribute	from	the	request	and	calls	the
cookie	method	on	the	response.	We	can	create	test	doubles	for	these	as	follows,	in	a	new	test
script	under	test/middleware/users.js:

'use	strict';

const	middleware	=	require('../../middleware/users.js');

const	expect	=	require('chai').expect;

describe('Users	middleware',	()	=>	{				

				const	defaultUserId	=	'user-id-1';

				let	request,	response;

				

				beforeEach(()	=>	{

								request	=	{	cookies:	{}	};

								response	=	{	cookie:	()	=>	{}	};

				});

				

				it('if	the	user	already	signed	in,	reads	their	ID	from	a	cookie	and	

exposes	the	user	on	the	request',	()	=>	{

								//	Given

								request.cookies.userId	=	defaultUserId;

								

								//	When

								middleware(request,	response,	()	=>	{});

								

								//	Then

								expect(request.user).to.exist;

								expect(request.user.id).to.equal(defaultUserId);

				});	

});

Here,	we	simply	create	a	plain	JavaScript	object	to	represent	the	request.	This	allows	us	to	verify
that	the	production	code	reads	from,	and	writes	to,	the	request	properties	correctly.	We	just	pass
in	the	minimum	possible	input	for	the	response	object	and	the	next	function	to	allow	the	code	to
execute.	This	is	very	easy	to	do	in	JavaScript,	partly	because	it	is	not	statically	typed.	Creating
test	doubles	like	this	in	C#	or	Java	can	be	a	lot	more	work	as	the	compiler	will	insist	on	the	test
doubles	matching	the	corresponding	parameter	types.

We	also	need	to	test	that	our	middleware	calls	the	next	middleware	in	the	chain,	as	this	is
important	behavior.	This	is	slightly	more	complex	than	just	creating	an	object	with	simple
properties.	We	can	still	create	a	suitable	test	double	by	defining	a	new	function	that	records	when
it	is	called	(this	kind	of	test	double	is	called	a	spy):

				it('calls	the	next	middleware	in	the	chain',	()	=>	{

								//	Given

								let	calledNext	=	false;

								const	next	=	()	=>	calledNext	=	true;

								

								//	When

								middleware(request,	response,	next);

								

								//	Then

								expect(calledNext).to.be.true;

				});

This	works	perfectly	well,	but	will	become	more	cumbersome	if	we	want	to	test	more	complex
calls,	for	example,	if	we	want	to	check	for	multiple	calls	or	make	further	assertions	about	the
arguments	passed	in.	We	can	simplify	this	by	making	use	of	a	framework	to	create	test	doubles	for
us.

Creating	test	doubles	using	Sinon.JS
Sinon.JS	is	a	framework	for	creating	all	kinds	of	test	doubles.	Let's	first	install	it	into	our
application	by	running	the	following	on	the	command	line:

>	npm	install	sinon	--save-dev

Now	let's	simplify	our	previous	test	and	write	a	more	complex	test	using	test	doubles	created	by
Sinon.JS:

const	expect	=	require('chai').expect;

const	sinon	=	require('sinon');

...

				it('calls	the	next	middleware	in	the	chain',	()	=>	{

										//	Given

								const	next	=	sinon.spy();

								

								//	When

								middleware(request,	{},	next);

								

								//	Then

								expect(next.called).to.be.true;

				});

				

				it('if	the	user	is	not	already	signed	in,	'	+

								'creates	a	new	user	id	and	stores	it	in	a	cookie',	()	=>	{

								//	Given

								request.cookies.userId	=	undefined;

								response	=	{	cookie:	sinon.spy()	};

								

								//	When

								middleware(request,	response,	()	=>	{});

								

								//	Then

								expect(request.user).to.exist;

								const	newUserId	=	request.user.id;

								expect(newUserId).to.exist;

								expect(response.cookie.calledWith(

												'userId',	newUserId)).to.be.true;

				});

Sinon.JS	spies	keep	track	of	the	details	of	all	calls	made	to	them	and	provide	a	convenient	API
for	checking	these.	This	allows	us	to	keep	our	test	code	simple	and	readable.	There	are	many
more	properties	than	just	the	called	and	calledWith	user	here.	Take	a	look	at	the	Sinon.JS
documentation	at	http://sinonjs.org/docs/#spies-api	to	see	some	of	the	other	ways	we	can	verify
the	calls	made	against	a	spy.

Note

Spies,	stubs,	and	mocks

http://sinonjs.org/docs/#spies-api

If	you	read	more	of	the	Sinon.JS	documentation,	you'll	see	that	it's	very	explicit	about	the
difference	between	spies,	stubs,	and	mocks.	This	is	in	contrast	to	most	popular	test	double
frameworks	in	Java	and	.NET,	which	tend	to	call	all	test	doubles	by	the	same	name	(typically
mock	or	fake).	In	reality	though,	most	instances	of	test	doubles	typically	only	act	as	a	spy	(used
for	verifying	side-effects)	or	a	stub	(used	for	providing	data,	or	throwing	exceptions	to	test	error-
handling).	A	true	mock	verifies	a	specific	sequence	of	calls	and	returns	specific	data	to	the	code
under	test.	Although	some	of	the	early	mocking	frameworks	in	Java	and	.NET	only	supported	this
type	of	test	double	(now	sometimes	called	a	strict	mock),	it	isn't	common	practice	anymore.	This
is	because	it	quite	tightly	couples	test	and	production	code	and	makes	refactoring	more	difficult.
It's	especially	rare	to	have	more	than	one	mock	(as	opposed	to	just	a	stub	or	spy)	in	a	single	test.

Testing	an	Express	application
While	using	Sinon.JS	makes	our	tests	neater,	they	still	depend	on	the	details	of	the	Express
middleware	API	and	how	we're	using	it.	This	might	be	appropriate	for	our	middleware	module	as
we	want	to	ensure	that	it	fulfills	a	particular	contract	(especially	calling	next	and	setting
request.user).	For	most	middleware,	though,	especially	our	routes,	this	approach	would	couple
our	tests	too	closely	to	our	implementation.

It	would	be	better	to	test	the	actual	behavior	of	each	route	by	making	HTTP	requests	to	it	and
examining	the	responses,	rather	than	checking	for	specific	low-level	interactions	with	the	request
and	response	objects.	This	gives	us	more	flexibility	to	change	our	implementation	and	refactor
our	code,	without	needing	to	change	the	tests.	Thus,	our	tests	can	support	this	process	(by	catching
regressions)	rather	than	hindering	it	(by	having	to	be	updated	to	match	our	implementation).

On	other	platforms,	testing	a	whole	application	can	be	quite	a	heavyweight	process.	It	is	possible
to	start	up	a	server	in	process,	for	example,	using	Jetty	in	Java	or	Katana	in	.NET.	Newer
application	frameworks,	such	as	Spring	Boot	or	NancyFx,	also	make	this	process	easier.	These
are	still	likely	to	be	relatively	slow	and	resource-intensive	tests,	though.

In	Node.js,	starting	up	an	application	server	is	easy	and	very	lightweight.	We	just	use	the	same
http.createServer	call	as	we've	seen	before,	and	pass	it	an	application.	To	test	our	route	in
isolation,	we'll	bootstrap	a	new	application	containing	just	this	route.	Let's	see	how	we	can	use
this	to	test	the	delete	endpoint	of	our	games	route.	We	add	the	following	code	under
test/routes/games.js:

'use	strict';

const	http	=	require('http');

const	express	=	require('express');

const	bodyParser	=	require('body-parser');

const	expect	=	require('chai').expect;

const	gamesService	=	require('../../src/services/games.js');

const	TEST_PORT	=	5000,	userId	=	'test-user-id';

describe('/games',	()	=>	{

		let	server;

		const	makeRequest	=	(method,	path,	callback)	=>	{

				http.request({

						method:	method,

						port:	TEST_PORT,

						path:	path

				},	callback).end();

		};

		

		before(done	=>	{

				const	app	=	express();

				app.use(bodyParser.json());

				app.use((req,	res,	next)	=>	{

						req.user	=	{	id:	userId	};	next();

				});

				

				const	games	=	require('../../src/routes/games.js');

				app.use('/games',	games);

				

				server	=	http.createServer(app).listen(TEST_PORT,	done);

		});

		

		afterEach(()	=>	{

				const	gamesCreated	=	gamesService.availableTo("non-user");

				gamesCreated.forEach(game	=>	game.remove());

		});

		

		after(done	=>	{

				server.close(done);

		});

		

		describe('/:id	DELETE',	()	=>	{

				it('should	allow	users	to	delete	their	own	games',	done	=>	{

						const	game	=	gamesService.create(userId,	'test');

						

						makeRequest('DELETE',	'/games/'	+	game.id,	response	=>	{

								expect(response.statusCode).to.equal(200);

								expect(gamesService.createdBy(userId)).to.be.empty;

								done();

						});

				});

		});

});

This	might	seem	like	quite	a	lot	of	code,	but	remember	that	we're	firing	up	an	entire	application
here.	Also,	most	of	this	code	will	be	reused	for	multiple	tests.	Let's	work	through	what	it	does.

The	before	callback	creates	our	server,	just	as	we	saw	in	Chapter	2	,	Getting	Started	with
Node.js,	listening	on	a	special	port	for	use	by	our	tests.	It	also	sets	up	some	stub	middleware	to
simulate	a	current	user	on	the	request.	The	afterEach	callback	clears	up	any	created	games	(as
we	saw	before	in	the	test	of	the	games	service).	Note	that	since	we're	running	in	the	same
process,	we	can	trivially	interact	with	the	same	data	layer	that	our	application	is	using.	Finally,
the	after	function	asks	the	server	to	stop	listening	for	connections.

The	test	itself	is	very	simple:	we	just	create	a	game	set	by	the	current	user	(as	in	our	service	tests
before)	and	then	issue	a	request	to	delete	it.	This	makes	use	of	our	own	makeRequest	function,
which	simply	calls	through	to	Node's	http.request.	We	can	then	inspect	the	response	object	to
check	for	the	appropriate	status	code,	and	check	the	service	for	the	desired	effect.

Tip

Writing	asynchronous	tests	in	Mocha

Notice	that	our	test	and	all	of	the	callbacks	to	Mocha's	hook	functions	discussed	above	(except
for	afterEach)	take	a	done	parameter.	This	is	because	all	of	these	tests	perform	some

asynchronous	work.	Mocha	makes	it	very	easy	to	write	asynchronous	tests	or	hooks:	you	just
make	your	callback	function	take	a	single	parameter	(called	done	by	convention),	and	call	it	when
processing	is	complete.	If	it's	not	called	within	a	timeout	(which	defaults	to	2	seconds	but	can	be
changed),	then	Mocha	fails	the	test.

Let's	run	our	tests	again	using	the	npm	test	command.	Notice	that	all	of	the	tests	still	finish	very
quickly	(tens	of	milliseconds	on	my	machine),	even	though	we're	starting	up	our	whole	server-
side	application.	You	may	also	notice	the	output	is	a	bit	messy	due	to	log	output	from	the	server.
We	can	easily	suppress	this	by	updating	app.js	as	follows:

//app.use(favicon(path.join(__dirname,	'public',	'favicon.ico')));

if	(app.get('env')	===	'development')	{

				app.use(logger('dev'));

}

app.use(bodyParser.json());

The	'env'	property	of	an	Express	application	comes	from	the	NODE_ENV	environment	variable
(or	defaults	to	development	if	this	is	not	present).	This	is	useful	for	differentiating	between
production	and	development	environments.	Since	it	defaults	to	development,	we	also	need	to	set
it	to	something	else	in	order	to	suppress	this	logging	in	our	tests.	We	can	do	this	by	updating	our
test	script	in	package.json	as	follows:

		"scripts":	{

				"start":	"node	./bin/www",

				"test":	"set	NODE_ENV=test	&&	node	node_modules/mocha/bin/mocha	

test/**/*.js"

		},

Simplifying	tests	using	SuperAgent
While	our	tests	are	fast,	and	setting	up	the	server	is	quite	straightforward,	we	do	have	quite	a	lot
of	code	for	making	requests	to	the	server	and	handling	responses.	This	would	become	more
complex	if	we	needed	to	make	a	wider	variety	of	requests,	or	were	interested	in	more	than	just
the	response	status	code	or	headers.

We	can	simplify	our	tests	by	using	a	library	that	provides	a	simpler	API	for	communicating	with
the	server.	SuperAgent	(https://visionmedia.github.io/superagent/)	is	a	JavaScript	library	that
provides	a	fluent,	readable	syntax	for	making	HTTP	requests.	This	can	be	used	for	Ajax	requests
in	the	browser,	or	for	requests	in	a	Node.js	application	as	we're	doing	here.

We'll	make	use	of	SuperAgent	through	a	lightweight	wrapper	called	SuperTest
(https://github.com/visionmedia/supertest),	which	makes	testing	Node.js-based	HTTP
applications	even	more	convenient.

First,	we	add	SuperTest	into	our	application	using	npm,	by	running	the	following	on	the	command
line:

>	npm	install	supertest	--save-dev

Now	we	can	rewrite	our	tests	as	follows:

'use	strict';

const	express	=	require('express');

const	bodyParser	=	require('body-parser');

const	request	=	require('supertest');

const	expect	=	require('chai').expect;

const	gamesService	=	require('../../src/services/games.js');

const	userId	=	'test-user-id';

describe('/games',	()	=>	{

		let	agent,	app;

		

		before(()	=>	{

				app	=	express();

				app.use(bodyParser.json());

				app.use((req,	res,	next)	=>	{

						req.user	=	{	id:	userId	};	next();

				});

				

				const	games	=	require('../../src/routes/games.js');

				app.use('/games',	games);

		});

		

		beforeEach(()	=>	{

				agent	=	request.agent(app);

		});

		

https://visionmedia.github.io/superagent/
https://github.com/visionmedia/supertest

		describe('/:id	DELETE',	()	=>	{

				it('should	allow	users	to	delete	their	own	games',	done	=>	{

						const	game	=	gamesService.create(userId,	'test');

						

						agent

								.delete('/games/'	+	game.id)

								.expect(200)

								.expect(()	=>

											expect(gamesService.createdBy(userId)).to.be.empty)

								.end(done);

				});

		});

});

SuperTest	and	SuperAgent	take	care	of	starting	up	the	server	for	our	application,	and	provide	a
much	simpler	API	for	making	requests.	Note	the	use	of	a	request	agent,	which	represents	a	single
browser	session.

SuperAgent	provides	a	number	of	functions	(get,	post,	delete,	and	so	on)	for	making	HTTP
requests.	These	can	be	chained	with	calls	to	the	expect	function	(not	to	be	confused	with	Chai's
expect)	to	verify	properties	of	the	response,	such	as	the	status	code.	We	can	also	pass	in	a
callback	to	make	specific	checks	about	the	response,	or	verify	side-effects	(as	we	do	in	the
previous	example).

Note	that	it	is	important	to	always	call	the	end	function	to	make	sure	any	expectation	errors	are
thrown	and	fail	the	test.	We	can	pass	Mocha's	done	callback	to	end	the	test	when	the	request	is
completed.

Now	that	we've	simplified	our	test	code,	we	can	easily	add	more	tests	for	our	routes.	For
example,	let's	add	some	tests	to	cover	the	negative	cases	of	our	delete	endpoint:

				it('should	not	allow	users	to	delete	games	that	they	did	not	set',	done	

=>	{

						const	game	=	gamesService.create('another-user-id',	'test');

						agent

								.delete('/games/'	+	game.id)

								.expect(403)

								.expect(()	=>	expect(gamesService.get(game.id).ok))

								.end(done);

				});

				it('should	return	a	404	for	requests	to	delete	a	game	that	no	longer	

exists',	done	=>	{

						const	game	=	gamesService.create(userId,	'test');

						agent

								.delete(`/games/${game.id}`)

								.expect(200)

								.end(function(err)	{

										if	(err)	{

												done(err);

										}	else	{

												agent

														.delete('/games/'	+	game.id)

														.expect(404,	done);

										}

								});

				});

Full-stack	testing	with	PhantomJS
We	have	now	written	unit	tests	for	logic	at	the	core	of	our	application	and	integration	tests	for	our
server-side	routes.	We	don't	yet	have	any	automated	tests	that	cover	our	views	and	client-side
scripts	as	our	manual	testing	throughout	the	previous	chapters	did.

We	can	write	unit	tests	for	client-side	scripts	using	Mocha.	However,	all	of	our	current	client-
side	scripts	interact	with	the	server,	so	aren't	good	candidates	for	unit	testing.	Our	manual	tests
are	really	full-stack	tests	of	our	whole	application,	including	the	interaction	between	the	server
and	the	client.

In	order	to	achieve	this	in	an	automated	test,	we	will	need	to	use	some	form	of	browser
automation.	PhantomJS	is	a	headless	browser	with	a	JavaScript	API	that	allows	us	to	automate	it
directly.	We	can	write	a	simple	test	for	our	game	page	using	this.

First,	we'll	install	PhantomJS	within	our	project	by	running	the	following	on	the	command	line:

>	npm	install	phantomjs-prebuilt	--save-dev

Note

PhantomJS	is	not	a	Node.js	module.	It	is	a	standalone,	headless	web	browser.	The	npm	module	is
just	a	convenient	way	of	installing	it	and	making	it	a	dependency	of	the	project.	PhantomJS	cannot
be	invoked	from	Node.js,	except	to	execute	it	as	a	separate	child	process.

Now	we	can	implement	a	test	as	follows,	under	integration-test/game.js:

(function()	{

				'use	strict';

				var	expect	=	require('chai').expect;

				var	page	=	require('webpage').create();

				var	rootUrl	=	'http://localhost:3000';

				

				withGame('Example',	function()	{

								expect(getText('#word')).to.equal('_______');

									

								page.evaluate(function()	{

												$(document).ajaxComplete(window.callPhantom);

								});

								

								page.sendEvent('keydown',	page.event.key.E);

								page.onCallback	=	verify(function()	{

												expect(getText('#word')).to.equal('E_____E');

												expect(getText('#missedLetters')).to.be.empty;

												

												page.sendEvent('keydown',	page.event.key.T);

												page.onCallback	=	verify(function()	{

																expect(getText('#word')).to.equal('E_____E');

																expect(getText('#missedLetters')).to.equal('T');

																

																console.log('Test	completed	successfully!');

																phantom.exit();

												});

								});

				});

				

				function	withGame(word,	callback)	{

								...

				}

				

				function	getText(selector)	{

								return	page.evaluate(function(s)	{

												return	$(s).text();

								},	selector);

				}

				

				function	verify(expectations)	{

								return	function()	{	

												try	{

																expectations();

												}	catch(e)	{

																console.log('Test	failed!');

																handleError(e.message);

												}

								}

				}

				

				function	handleError(message)	{

								console.log(message);

								phantom.exit(1);

				}

				

				phantom.onError	=	page.onError	=	handleError;

}());

Make	sure	the	application	is	running	(using	npm	start),	then	execute	the	test	by	running	the
following	on	the	command	line:

>	node	node_modules/phantomjs-prebuilt/bin/phantomjs	integration-test/game.js

Let's	take	a	look	through	the	code	to	understand	how	it	works.	Note	that	we're	running	in	the
browser	environment	here	rather	than	Node.js,	so	fall	back	to	the	ECMAScript	5	syntax	(for
example,	var	instead	of	let,	and	no	arrow	functions).

The	omitted	withGame	method	(which	you	can	find	in	the	book's	companion	code)	uses
PhantomJS	to	load	the	index	view	and	submit	a	new	game,	then	clears	PhantomJS's	cookies	and
opens	the	game	as	a	new	user,	before	invoking	the	callback	passed	to	withGame.

In	our	test,	we	create	a	game	to	guess	the	word	example,	then	invoke	JavaScript	within	the	page
to	make	assertions	about	its	contents.	The	getText	function	uses	PhantomJS's	page.evaluate
function	to	run	some	JavaScript	within	the	context	of	the	page,	and	return	a	value.	Note	that	the
callback	function	passed	to	page.evaluate	does	not	have	access	to	the	wider	execution	context

of	our	script.	We	can,	however,	specify	additional	arguments	to	the	page.evaluate	call,	which
is	how	we	pass	in	the	selector	for	jQuery.

We	then	use	page.evaluate	again	to	set	up	a	callback	each	time	an	Ajax	request	completes.
Here,	we	use	window.callPhantom,	which	executes	within	the	context	of	the	page,	and	triggers
page.onCallback,	which	executes	within	the	context	of	our	test.

Finally,	we	use	page.sendEvent	to	trigger	a	keyboard	event	in	the	browser.	Note	that	this	is	not
the	same	as	using	pure	JavaScript	within	the	browser	to	trigger	a	DOM	event,	but	is	an	instruction
directly	to	PhantomJS	to	simulate	the	keypress	event	as	if	it	had	come	from	the	user.

If	we	put	all	this	together,	we	get	the	following:

We	use	page.sendEvent	to	simulate	pressing	a	keyboard	key
This	causes	our	production	code	to	send	off	an	Ajax	request
When	this	request	completes,	window.callPhantom	is	invoked	in	the	context	of	the	browser
This	causes	PhantomJS	to	invoke	our	page.onCallback	function
We	then	use	jQuery	within	page.evaluate	(via	getText)	to	retrieve	values	from	the	page

The	remaining	contents	of	the	file	(verify	and	handleError)	ensure	that	PhantomJS	writes	all
errors	to	the	console	and	sets	an	appropriate	exit	code	in	the	case	of	a	failure.

Summary
In	this	chapter,	we	have	learned	how	to	write	unit	tests	in	Node.js,	used	Mocha	and	Chai	to	write
more	descriptive	tests,	created	test	doubles	using	Sinon.JS,	written	application	level	tests	using
SuperAgent	and	SuperTest,	and	implemented	a	full-stack	test	in	PhantomJS.

Although	we	have	tests	at	each	layer	of	our	application	now,	we	haven't	yet	covered	all	of	our
code.	It	would	be	useful	to	find	any	gaps	where	we	should	write	more	tests.	We	also	have	to
invoke	a	few	different	commands	to	run	all	of	our	unit	and	integration	tests.	In	the	next	chapter,
we'll	see	how	to	automate	these	and	other	processes	as	part	of	a	continuous	integration	build.

Chapter	7.	Setting	up	an	Automated	Build
In	the	previous	chapter,	we	took	a	major	step	from	a	demo	application	to	a	maintainable	codebase
by	starting	to	write	automated	tests.	Another	important	component	of	real-world	software	projects
is	build	automation.

Automated	builds	allow	a	whole	team	to	work	on	a	project	in	a	consistent	manner.	A	standardized
way	of	executing	common	tasks	makes	it	easier	for	new	developers	to	get	started.	It	also	avoids
annoying	issues	with	developers	getting	different	results	for	spurious	reasons.

In	this	chapter,	we	will	cover	the	following	topics:

Configuring	an	integration	server	to	build	and	run	our	tests	automatically
Setting	up	an	automated	task	runner	to	simplify	the	execution	of	our	tests
Automating	more	tasks	to	help	maintain	coding	standards	and	test	coverage

Setting	up	an	integration	server
Build	and	test	automation	allow	code	changes	to	be	verified	by	an	integration	server,	an
automated	server	independent	of	individual	developers'	machines.	This	helps	keep	the	project
stable	by	catching	errors	or	regressions	early	on.	The	integration	server	can	automatically	alert
the	developer	who	introduced	the	problem.	They	then	have	a	chance	to	fix	the	problem	before	it
causes	issues	for	the	rest	of	the	team	or	the	project	as	a	whole.

Building	the	codebase	and	running	tests	automatically	on	each	commit	is	called	Continuous
Integration	(CI).	There	are	many	CI/build	servers	available.	These	can	be	self-hosted	or
provided	as	a	third-party	service.	Examples	that	you	may	have	used	before	include	Jenkins
(formerly	Hudson),	Atlassian	Bamboo,	JetBrains	TeamCity,	and	Microsoft's	Team	Foundation
Server.

We're	going	to	be	using	Travis	CI	(https://travis-ci.org/),	which	is	a	hosted	service	for	running
automated	builds.	It	is	free	for	use	with	public	source	code	repositories.	In	order	to	use	Travis
CI's	free	service,	we	need	to	host	our	application's	code	in	a	public	GitHub	repository.

https://travis-ci.org/

Setting	up	a	public	GitHub	repository
If	you	have	your	own	version	of	the	example	application	code	from	following	along	with	the	book
so	far,	and	are	already	familiar	with	GitHub,	you	can	push	your	code	to	a	new	GitHub	repository
of	your	own.	Otherwise,	you	can	fork	one	of	the	example	chapter	repositories.

Use	https://github.com/NodeJsForDevelopers/chapter06/	if	you	want	to	follow	along	with	the
changes	in	this	chapter.	This	contains	the	example	code	from	the	end	of	Chapter	6,	Testing
Node.js	Applications,	which	we	will	build	on	in	this	chapter.	You	can	create	your	own	fork	of
this	repository	using	the	Fork	button	on	GitHub.	This	should	be	visible	at	the	top-right	of	the
screen	when	visiting	the	URL	mentioned	earlier:

This	will	create	a	new	repository	under	your	own	GitHub	account,	using	the	example	code	as	a
starting	point.

Note

This	is	all	you	need	to	get	started	in	this	chapter.	However,	if	you	are	not	already	familiar	with
Git	and/or	GitHub	and	would	like	to	know	more,	you	can	find	more	information	at
https://help.github.com/.

https://github.com/NodeJsForDevelopers/chapter06/
https://help.github.com/

Building	a	project	on	Travis	CI
We'll	now	set	up	a	build	for	our	application	on	Travis	CI.	If	you	created	your	own	public
repository	in	the	previous	section,	you	can	try	this	out	for	yourself.	Visit	https://travis-ci.org	and
sign	in	with	GitHub.	You	should	see	a	profile	page	listing	your	repositories.	Enable	the	repository
you	just	created.

We	have	to	create	a	simple	config	file	to	tell	Travis	CI	in	what	environment(s)	to	build	our
application.	Create	a	file	in	the	root	of	the	project	as	follows	(note	the	leading	dot	in	the	file	name
.travis.yml):

language:	node_js

node_js:

	-	6

	-	4

This	tells	TravisCI	to	build	our	project	with	the	current	stable	and	long-term	support	versions	of
Node.js	(at	the	time	of	writing).	If	you're	familiar	with	Git,	you	can	make	this	change	in	a	local
clone	of	your	repository,	commit,	and	push	it	to	master.	If	you're	new	to	Git,	the	easiest	way	to
create	this	file	is	to	navigate	to	your	repository	on	https://github.com	and	click	on	the	New	file
button.	This	will	open	a	web-based	editor	from	which	you	can	create	and	commit	the	file.

Once	you	have	added	this	file	to	your	repository,	visit	https://travis-ci.org	again.	You	should	now
see	a	passing	build	for	your	repository:

https://travis-ci.org
https://github.com
https://travis-ci.org

TravisCI	built	our	project	twice,	once	for	each	version	of	Node.js	that	we	specified.	If	you	click
on	either	build	you	can	see	the	command-line	output.	Notice	that	TravisCI	automatically	ran	our
tests	using	the	standard	npm	test	command.

Automating	the	build	process	with	Gulp
It's	great	that	TravisCI	runs	our	tests	automatically.	But	that's	not	the	only	task	we	want	to
automate.	Of	course,	as	JavaScript	is	an	interpreted	language,	we	don't	have	a	compile	step	in	our
build	process.	There	are	other	tasks	we	want	to	carry	out	though,	for	example,	checking	our	code
style,	running	integration	tests,	and	gathering	code	coverage.	We	can	make	use	of	a	build	tool	to
automate	these	tasks	and	allow	us	to	run	them	in	a	consistent	manner.	You	may	have	used
MSBuild	for	this	in	.NET	before	or	Java	tools	such	as	Maven	or	Gradle.

There	are	several	different	build	tools	available	for	Node.js.	The	two	most	popular	by	far	are
Grunt	and	Gulp.	Both	have	large	communities	and	an	extensive	range	of	plugins	for	performing
different	operations.	Grunt's	model	has	each	operation	reading	in	files	and	writing	back	to	the
filesystem.	Gulp	uses	Node.js	streams	to	pipe	processing	from	one	operation	to	the	next.

Grunt's	model	is	slightly	simpler	and	may	be	easier	to	get	started	with,	especially	if	you	have
modest	build	requirements.	Gulp's	model	is	potentially	faster	for	some	types	of	task	and	can
reduce	the	amount	of	build	configuration	code	you	need	to	write.	Both	are	excellent,	well-
supported	build	tools.	We'll	be	using	Gulp,	but	everything	we	do	in	this	chapter	could	be
achieved	with	Grunt	as	well.

Running	tests	using	Gulp
We	first	need	to	install	Gulp,	both	globally	(to	add	it	to	our	path)	and	into	the	project.	Then	we
add	Gulp	plugins	for	controlling	Mocha	and	environment	variables:

>	npm	install	-g	gulp-cli

>	npm	install	gulp@~3.x	--save-dev

>	npm	install	gulp-mocha	--save-dev

>	npm	install	gulp-env	--save-dev

We	now	add	a	configuration	file	for	Gulp	to	our	project.	Gulp	will	look	for	a	file	with	this	name
by	convention	as	gulpfile.js:

'use	strict';

const	gulp	=	require('gulp');

const	mocha	=	require('gulp-mocha');

const	env	=	require('gulp-env');

gulp.task('test',	function()	{

		env({	vars:	{	NODE_ENV:	'test'	}	});

		return	gulp.src('test/**/*.js')

				.pipe(mocha());

});

gulp.task('default',	['test']);

This	creates	a	test	task	and	makes	an	empty	default	task	to	run	it.	The	'default'	task	name	is
special	and	will	be	invoked	when	we	run	gulp	from	the	command	line.	We	can	now	remove	our
test	script	from	package.json	and	update	our	.travis.yml	file	to	run	Gulp:

language:	node_js

before_script:

		-	npm	install	-g	gulp

script:	gulp

node_js:

	-	6

	-	4	

This	hasn't	gained	us	much	yet.	We	now	just	have	a	slightly	shorter	command	to	execute	our	tests.
However,	the	use	of	a	build	tool	will	become	more	valuable	as	we	add	more	tasks	to	automate.
Let's	look	at	some	of	the	other	processes	we	may	want	to	make	part	of	our	build.

Checking	code	style	with	ESLint
Although	we	don't	need	a	compiler,	we	can	still	benefit	from	having	the	computer	perform	static
analysis	of	our	code.	Linting	tools	are	common	in	many	languages	for	spotting	common
programming	errors	that	may	lead	to	subtle	bugs	or	confusing	code.	You	may	be	familiar	with
CodeRush,	StyleCop,	and	others	for	.NET,	or	CheckStyle,	Findbugs,	Sonar,	and	others	for	Java.

We'll	be	using	a	JavaScript/ECMAScript	linting	tool	called	ESLint.	Let's	first	install	it	globally:

>	npm	install	-g	eslint

Now	create	a	config	file	to	tell	ESLint	what	rules	to	use	as	.eslintrc.json:

{

				"extends":	"eslint:recommended",

				"env":	{

								"node":	true,

								"es6":	true,

								"mocha":	true,

								"browser":	true,

								"jquery":	true

	 },

				"rules":	{

								"semi":	[2,	"always"],

								"quotes":	[2,	"single"]

				}

}

Here,	we	tell	ESLint	to	use	its	standard	recommended	rules	for	the	environments	that	we	are
using	in	our	scripts.	We	also	tell	it	to	check	for	semicolons	at	the	ends	of	statements	and	to	prefer
single	quotes.	You	can	run	ESLint	as	follows:

>	eslint	**/*.js

ESLint	outputs	any	errors	it	finds,	including	the	following:

An	unused	favicon	local	variable	in	app.js
The	unused	next	parameter	in	various	middleware	functions
The	use	of	console.log	in	our	PhantomJS	integration	test
The	use	of	the	phantom	variable	in	our	PhantomJS	integration	test

The	first	of	these	is	trivial	to	solve:	we	can	just	remove	the	variable	declaration	(this	was	created
for	us	by	the	express	application	template	in	Chapter	2,	Getting	Started	with	Node.js).	We	could
do	the	same	for	the	next	parameters	on	our	middleware	functions.	However,	I	prefer	middleware
functions	to	have	a	standard	and	easily	identifiable	signature.	Instead	of	removing	this	parameter,
we	can	tell	ESLint	to	ignore	this	particular	parameter	as	follows:

				"rules":	{

								"semi":	[2,	"always"],

								"quotes":	[2,	"single"],

								"no-unused-vars":	[2,	{"argsIgnorePattern":	"next"}]

				}

The	last	two	bullet	points	both	relate	to	our	PhantomJS	integration	test.	This	is	quite	a	special
file,	so	here	we'll	change	ESLint's	behavior	for	this	file	specifically,	using	a	comment	directive.
We	can	add	the	following	directives	at	the	very	top	of	the	offending	file,	integration-
test/game.js:

/*eslint-env	phantomjs	*/

/*eslint-disable	no-console	*/

The	first	of	these	directives	tells	ESLint	that	this	script	file	will	run	in	the	PhantomJS
environment,	where	the	phantom	variable	will	be	provided	for	us,	so	ESLint	does	not	need	to
warn	us	against	referencing	it.	The	second	directive	disable's	ESLint's	rule	against	using	console
logging.

If	you	run	ESLint	again,	you	should	find	that	the	errors	listed	previously	have	disappeared.	Any
remaining	errors	should	be	smaller	issues	such	as	missing	semicolons	or	inconsistent	use	of
quotes.	These	should	be	quick	to	fix	manually,	but	in	fact,	ESLint	can	do	this	for	us,	as	we'll	see
in	the	next	section.

Automatically	fixing	issues	in	ESLint
ESLint	is	able	to	automatically	correct	some	of	the	issues	it	finds.	If	ESLint	is	not	currently
reporting	any	errors,	try	removing	a	semicolon	from	one	of	the	project's	source	files.	Run	ESLint
and	you	should	see	an	error	for	this.

Now	run	ESLint	with	the	--fix	option	as	follows:

>	eslint	**/*.js	--fix

ESLint	replaces	the	semicolon	for	us.	Not	all	of	ESLint's	rules	can	be	fixed	in	this	way,	but	many
of	them	can.	It	depends	on	whether	a	rule's	errors	always	have	a	single	unambiguous	fix.	The	full
list	of	rules,	including	which	ones	are	fixable,	can	be	found	on	the	ESLint	site	at
http://eslint.org/docs/rules/.

You	should	now	be	able	to	run	ESLint	with	no	errors	or	warnings.	ESLint	is	now	ready	to	pick	up
errors	in	any	new	code	that	we	write.

http://eslint.org/docs/rules/

Running	ESLint	from	Gulp
It's	slightly	messy	to	specify	special	exclusions	for	our	Phantom	integration	test.	It's	also
unfortunate	that	we're	enabling	the	Node.js,	Mocha,	browser,	and	jQuery	environments	globally.
The	Mocha	environment	is	only	needed	for	our	test	code.	The	browser	and	jQuery	environments
are	only	need	for	our	client-side	code,	where	the	Node.js	environment	is	not	needed.

This	would	be	easier	to	manage	if	we	ran	ESLint	separately	on	different	sets	of	files.	This	would
start	to	become	tedious	and	error-prone	if	we	did	it	manually.	But	it's	a	great	use	case	for	a	build
tool.	We	can	set	up	separate	ESLint	profiles	for	different	sets	of	files	using	Gulp.	First,	install	the
Gulp	ESLint	plugin:

>	npm	install	gulp-eslint	--save-dev

Now	we	can	create	Gulp	tasks	to	lint	each	set	of	sources.	By	default,	the	gulp-eslint	plugin
uses	rules	from	our	.eslintrc.json	file.	So,	we	can	cut	this	down	to	just	the	rules	that	are
relevant	to	all	sources:

{

				"extends":	"eslint:recommended",

				"rules":	{

								"no-unused-vars":	[2,	{	"args":	"after-used"	}],

								"quotes":	[2,	"single"],

								"semi":	[2,	"always"]

				}

}

We	can	then	specify	the	relevant	rules	or	environments	for	each	set	of	sources	in	their	own	Gulp
task.	This	also	allows	us	to	remove	the	special	directive	comments	from	the	top	of	our	integration
test	script:

const	eslint	=	require('gulp-eslint');

gulp.task('lint-server',	function()	{

				return	gulp.src(['src/**/*.js',	'!src/public/**/*.js'])

								.pipe(eslint({

												envs:	['es6',	'node'],

												rules:	{

																'no-unused-vars':	[2,	{'argsIgnorePattern':	'next'}]

												}

								}))

								.pipe(eslint.format())

								.pipe(eslint.failAfterError());

});

								

gulp.task('lint-client',	function()	{

				return	gulp.src('src/public/**/*.js')

								.pipe(eslint({	envs:	['browser',	'jquery']	}))

								.pipe(eslint.format())

								.pipe(eslint.failAfterError());

});

gulp.task('lint-test',	function()	{

				return	gulp.src('test/**/*.js')

								.pipe(eslint({	envs:	['es6',	'node',	'mocha']	}))

								.pipe(eslint.format())

								.pipe(eslint.failAfterError());

});

gulp.task('lint-integration-test',	function()	{

				return	gulp.src('integration-test/**/*.js')

								.pipe(eslint({

												envs:	['browser',	'phantomjs',	'jquery'],

												rules:	{	'no-console':	0	}

								}))

								.pipe(eslint.format())

								.pipe(eslint.failAfterError());

});

Finally,	we	wire	up	the	dependencies	between	our	tasks:

gulp.task('test',	['lint-test'],	function()	{

		env({	vars:	{	NODE_ENV:	'test'	}	});

		return	gulp.src('test/**/*.js')

				.pipe(mocha());

});

gulp.task('lint',	[

		'lint-server',	'lint-client',	'lint-test',	'lint-integration-test'

]);

gulp.task('default',	['lint',	'test']);

Here,	we	make	the	test	task	depend	on	lint-test	and	create	a	new	overall	lint	task	to	run	all
of	the	others	as	part	of	the	default	build.	Try	running	Gulp	and	observe	the	output.	Note	that	it
kicks	off	all	the	lint	tasks	in	parallel,	but	waits	for	lint-test	to	complete	before	running	tests.
By	default,	Gulp	will	run	tasks	concurrently	if	possible.	If	a	task	returns	a	stream	(the	object
obtained	from	gulp.src)	at	the	end,	Gulp	is	able	to	use	this	to	detect	when	the	task	finishes.	Gulp
will	wait	for	a	task	to	finish	before	starting	any	tasks	that	depend	on	it.

To	see	how	ESLint	failures	affect	Gulp,	let's	add	another	ESLint	rule	to	ensure	the	use	of
JavaScript's	strict	mode,	as	described	in	Chapter	3,	A	JavaScript	Primer.	The	following	code	is
from	.eslintrc.json:

{

				"extends":	"eslint:recommended",

				"rules":	{

								"no-unused-vars":	[2,	{	"args":	"after-used"	}],

								"quotes":	[2,	"single"],

								"semi":	[2,	"always"],

								"strict":	[2,	"safe"]

				}

}

ESLint	is	clever	enough	to	make	use	of	the	specified	environment	for	each	set	of	files	to	work	out
how	strict	mode	should	be	applied:	at	the	top	of	functions	for	client-side	scripts	and	globally	for

files	that	will	become	Node.js	modules.	It	also	spots	when	we	unnecessarily	specify	strict	mode
multiple	times,	globally	or	in	nested	functions.

When	you	execute	Gulp,	notice	that	failures	in	the	ESLint	tasks	prevent	the	dependent	test	tasks
from	running.	If	you	fix	the	strict	mode	errors,	then	Gulp	will	run	successfully	again.

Gathering	code	coverage	statistics
Although	we	have	some	tests	for	our	application,	they	are	certainly	not	yet	comprehensive.	It
would	be	useful	to	be	able	to	see	what	parts	of	our	code	are	covered	by	tests.	For	this,	we'll	use
Istanbul,	a	JavaScript	code	coverage	tool.	First,	install	the	gulp-instanbul	plugin:

>	npm	install	gulp-istanbul	--save-dev

Now	we	need	to	add	a	Gulp	task	to	instrument	our	production	code	for	coverage:

const	istanbul	=	require('gulp-istanbul');

...

gulp.task('instrument',	function()	{

				return	gulp.src('src/**/*.js')

								.pipe(istanbul())

								.pipe(istanbul.hookRequire())

});

Finally,	we	need	to	update	our	test	task	to	output	a	coverage	report	and	fail	the	build	if	we	are
below	our	threshold:

gulp.task('test',	['lint-test',	'instrument'],	function()	{

				gulp.src('test/**/*.js')

								.pipe(mocha())

								.pipe(istanbul.writeReports())

								.pipe(istanbul.enforceThresholds({

												thresholds:	{	global:90	}

								}));

});

Now,	when	we	run	Gulp,	three	new	results	occur:

A	coverage	summary	appears	on	the	command	line
A	set	of	coverage	reports	appear	under	the	coverage	folder
The	build	fails	because	we	are	below	the	coverage	threshold

The	build	summary	on	the	command	line	is	very	useful.	There	is	even	more	detail	in	the	HTML
report	that	appears	at	coverage/lcov-report/index.html	(in	the	project	directory).

Although	we	need	to	improve	our	test	coverage,	we	don't	want	to	leave	our	build	failing.	For
now,	we'll	set	the	coverage	target	just	below	our	current	level	so	it	doesn't	drop	further.	We	can
do	this	with	the	options	passed	to	istanbul.enforceThresholds:

gulp.task('test',	['lint-test',	'instrument'],	function()	{

				return	gulp.src('test/**/*.js')

								.pipe(mocha())

								.pipe(istanbul.writeReports())

								.pipe(istanbul.enforceThresholds({

												thresholds:	{

																global:	{

																				statements:	70,

																				branches:	50

																}

												}

								}));

});

Running	integration	tests	from	Gulp
Gulp	tasks	are	just	ordinary	JavaScript	functions,	so	can	contain	any	functionality	we	like.	Let's
look	at	a	more	complex	use	case.	We'll	create	a	task	that	starts	up	our	server,	runs	integration
tests,	and	then	closes	the	server.	For	this,	we'll	need	the	Gulp	Shell	plugin:

>	npm	install	gulp-shell	--save-dev

First,	we	update	our	integration	test	script	so	that	we	can	pass	in	the	port	number	of	the	test
server.	This	makes	use	of	the	PhantomJS	'system'	module	as	follows	(in	integration-
test/game.js):

var	rootUrl	=	'http://localhost:'	+

																		require('system').env.TEST_PORT	||	3000;

Now	we	can	define	a	Gulp	task	to	run	the	server	and	the	integration	test:

const	shell	=	require('gulp-shell');

...

gulp.task('integration-test',

										['lint-integration-test',	'test'],	(done)	=>	{

		const	TEST_PORT	=	5000;

		let	server	=	require('http')

				.createServer(require('./src/app.js'))

				.listen(TEST_PORT,	function()	{

						gulp.src('integration-test/**/*.js')

								.pipe(shell('node	node_modules/phantomjs-prebuilt/bin/phantomjs	

<%=file.path%>',	{

												env:	{	'TEST_PORT':	TEST_PORT	}

								}))

								.on('error',	()	=>	server.close(done))

								.on('end',	()	=>	server.close(done))

				});

});

This	launches	the	application	and	then	makes	use	of	the	gulp-shell	plugin	to	execute	our
integration	test	scripts.	Finally,	we	make	sure	we	close	the	server	when	done,	passing	in	Gulp's
async	callback.	Like	returning	a	stream,	using	this	callback	allows	Gulp	to	know	when	the	task
has	completed.

We	make	this	task	depend	on	the	test	task	so	that	they	don't	interfere	with	one	another.	We	don't
make	this	part	of	our	default	task	as	it's	a	more	heavyweight	operation.	We	do	want	it	to	run	on
our	build	server	though,	so	we'll	add	it	to	.travis.yml	along	with	the	default	task:

language:	node_js

before_script:

		-	npm	install	-g	gulp

script:	gulp	default	integration-test

node_js:

	-	5

	-	4

Now,	if	we	push	to	the	remote	master,	TravisCI	will	run	static	analysis	on	our	code,	execute	all	of
our	unit	and	integration	tests,	and	check	the	unit	test	coverage.

Summary
In	this	chapter,	we	have	set	up	an	integration	build	using	Travis	CI,	added	static	analysis	of	our
code	using	ESLint,	automated	our	tests	and	other	tasks	using	Gulp,	and	started	measuring	our	test
coverage	using	the	Istanbul	tool.

Now	that	we	have	the	infrastructure	in	place	for	stable	development,	we	can	start	expanding	our
project.	In	the	next	chapter,	we'll	introduce	persistent	data	stores	to	the	application.

Chapter	8.	Mastering	Asynchronicity
Our	JavaScript	primer	(Chapter	3,	A	JavaScript	Primer)	covered	all	the	important	concepts	to	let
us	start	building	our	application.	But	there	is	one	fundamental	aspect	of	JavaScript	programming
worth	exploring	in	more	detail:	asynchronicity.

Chapter	1,	Why	Node.js?,	discussed	the	asynchronous	programming	model	of	Node.js.	It
described	the	consistent	approach	used	throughout	Node.js	APIs	and	third-party	libraries.	Recall
that	each	asynchronous	method	takes	a	callback	function	that	gets	passed	error	and	result
arguments,	for	example,	the	fs.stat	function	we	saw	in	Chapter	1,	Why	Node.js?:

fs.stat('/hello/world',	function	(error,	stats)	{

		console.log('File	last	updated	at:	'	+	stats.mtime);

});

However,	the	callback	pattern	has	some	weaknesses.	Performing	error	handling	and	combining
results	from	multiple	asynchronous	operations	can	become	quite	clumsy.	There	are	alternative
asynchronous	patterns	available	in	JavaScript	that	address	these	issues.	The	idea	of	multiple
competing	patterns	might	seem	worrying	in	itself,	though.	Having	a	single	consistent	approach
was	one	of	the	benefits	of	Node.js	discussed	in	Chapter	1,	Why	Node.js?.

We	should	also	revisit	the	idea	of	Node.js	APIs	and	libraries	being	asynchronous	throughout.	We
need	to	consider	how	this	applies	to	our	own	code.	This	is	not	just	something	we	need	to	worry
about	if	writing	a	module	for	use	by	a	third-party.	Even	within	our	own	applications,	most
modules	will	need	to	expose	their	functionality	through	an	asynchronous	interface.	If	not,	we
severely	limit	the	freedom	of	how	we	implement	these	modules.

In	this	chapter,	we	will	cover	the	following	topics:

Introducing	asynchronous	interfaces	to	our	own	modules
Observing	some	of	the	weaknesses	of	the	callback	pattern
Refactoring	away	from	callbacks	to	make	our	asynchronous	code	more	readable
Seeing	how	we	can	still	benefit	from	the	consistency	of	Node.js's	asynchronous
programming	model

Using	the	callback	pattern	for	asynchronous
code
Let's	look	at	one	of	the	methods	from	our	games	service:

module.exports.get	=	(id)	=>	games.find(game	=>	game.id	===	id);

The	interface	of	this	function	is	synchronous:	you	call	it	and	get	a	value	back.	Chapter	4,
Introducing	Node.js	Modules,	introduced	the	games	service	as	the	module	responsible	for	how
we	store	our	games.	The	interface	shouldn't	need	to	change	if	we	change	the	storage
implementation.	This	isn't	quite	the	case	at	the	moment,	though.

As	discussed	before,	most	Node.js	libraries	are	asynchronous.	Synchronous	interfaces	can't	make
use	of	asynchronous	implementations.	Let's	say	the	get	function	wants	to	make	use	of	an
asynchronous	method	in	a	third-party	datastore	library.	What	would	that	look	like?	The
comments	in	the	following	(non-working)	code	describe	the	problem:

module.exports.get	=	(id)	=>	{

				datastore.getById(id,	(err,	result)	=>	{

								//	Result	available,	but	outer	method	has	already	returned

				});

				return	???;	//	Need	to	return	here,	but	have	no	result	yet

};

This	is	a	problem	in	general,	not	just	in	JavaScript.	In	other	platforms,	you	could	delay	returning
until	the	asynchronous	operation	has	completed.	This	turns	an	asynchronous	operation	into	a
blocking	operation.	In	Node.js	(and	other	JavaScript	environments),	blocking	in	this	way	is	not	an
option.	It	would	be	incompatible	with	the	single-threaded,	non-blocking,	event-driven	execution
model.

Exposing	the	callback	pattern
To	allow	our	games	service	to	be	able	to	make	use	of	asynchronous	libraries,	we	need	to	give	it
an	asynchronous	interface.	Note	that	almost	all	libraries	in	the	Node.js	ecosystem	are
asynchronous.	If	they	weren't,	they	would	be	limited	in	the	same	way	as	our	games	service
currently	is.

We	can	rewrite	the	interface	of	our	get	function	to	follow	the	standard	asynchronous	callback
pattern.	Let's	see	what	effect	this	has	on	using	an	asynchronous	third-party	datastore	library
(again,	this	is	non-working	code,	with	a	fictional	datastore	object):

module.exports.get	=	(id,	callback)	=>	{

		datastore.getById(id,	(err,	result)	=>	{

				//	Can	now	make	use	of	the	result	by	passing	to	the	callback

				callback(err,	result);

		}

		//	No	longer	need	to	return	here

}

Of	course,	in	this	case	we	could	simplify	the	preceding	code	as	follows:

module.exports.get	=	(id,	callback)	=>	{

				datastore.getById(id,	callback);

}

In	general,	though,	we	might	want	to	do	some	more	processing	of	the	result	from	a	third-party
library.	So	our	function	might	look	more	like	this:

module.exports.get	=	(id,	callback)	=>	{

				datastore.getById(id,	(err,	result)	=>	{

								if	(err)	{

												callback(err);

								}	else	{

												callback(null,	processResult(result));

								}

				}

}

Assuming	processResult	is	internal	to	our	module,	it's	fine	for	it	to	have	a	synchronous
interface	for	now.	If	it	needs	to	do	asynchronous	work	later,	we	can	change	its	interface	without
affecting	the	consumers	of	our	module.

Our	games	service	module's	public	interface	does	need	to	be	entirely	asynchronous,	though.	We're
not	actually	changing	the	implementation	of	the	module	yet.	This	makes	updating	the	interface
quite	straightforward.	We	can	make	the	following	changes	in	src/services/games.js:

'use	strict';

const	games	=	[];

let	nextId	=	1;

class	Game	{

				...

				

				remove(callback)	{

								games.splice(games.indexOf(this),	1);

								callback();

				}

}

module.exports.create	=	(userId,	word,	callback)	=>	{

				const	newGame	=	new	Game(nextId++,	userId,	word);	

				games.push(newGame);

				callback(newGame);

};

module.exports.get	=	(id,	callback)	=>

				callback(null,

								games.find(game	=>	game.id	===	parseInt(id,	10)));

module.exports.createdBy	=	(userId,	callback)	=>

				callback(null,	games.filter(game	=>	game.setBy	===	userId));

module.exports.availableTo	=	(userId,	callback)	=>

				callback(null,	games.filter(game	=>	game.setBy	!==	userId));

Note	that	this	is	slightly	unrealistic,	though.	Control	would	normally	return	to	the	caller	before	an
asynchronous	method	completes.	We	can	achieve	this	by	using	process.nextTick	to	schedule
the	execution	of	the	callback	on	the	next	tick	of	the	event	loop	(refer	to	Chapter	1,	Why	Node.js?,
if	you	want	a	refresher	on	the	event	loop):

'use	strict';

const	games	=	[];

let	nextId	=	1;

const	asAsync	=	(callback,	result)	=>

																process.nextTick(()	=>	callback(null,	result));

class	Game	{

				...

				

				remove(callback)	{

								games.splice(games.indexOf(this),	1);

								asAsync(callback);

				}

}

module.exports.create	=	(userId,	word,	callback)	=>	{

				let	game	=	new	Game(nextId++,	userId,	word);

				games.push(game);

				asAsync(callback);

};

module.exports.get	=	(id,	callback)	=>

				asAsync(callback,

								games.find(game	=>	game.id	===	parseInt(id,	10)));

module.exports.createdBy	=	(userId,	callback)	=>

				asAsync(callback,	games.filter(game	=>	game.setBy	===	userId));

module.exports.availableTo	=	(userId,	callback)	=>

				asAsync(callback,	games.filter(game	=>	game.setBy	!==	userId));

Updating	the	rest	of	our	application	to	consume	this	asynchronous	interface	is	a	trickier	task.	This
is	why	it	is	worth	always	writing	module	interfaces	to	be	asynchronous	from	the	start.	We	should
definitely	address	this	before	expanding	our	application	any	further.

Consuming	asynchronous	interfaces
The	games	service	is	called	by	the	games	route,	the	index	route,	and	by	our	tests.	Let's	look	at	the
corresponding	changes	to	each	of	these	in	turn.	The	following	code	is	from
src/routes/games.js:

'use	strict';

const	express	=	require('express');

const	router	=	express.Router();

const	service	=	require('../service/games.js');

router.post('/',	function(req,	res,	next)	{

				let	word	=	req.body.word;

				if	(word	&&	/^[A-Za-z]{3,}$/.test(word))	{

								service.create(req.user.id,	word,	(err,	game)	=>	{

												if	(err)	{

																next(err);

												}	else	{

																res.redirect(`/games/${game.id}/created`);

												}

								});

				}	else	{

								res.status(400).send('Word	must	be	at	least	three	characters	long	and	

contain	only	letters');

				}

});

const	checkGameExists	=	function(id,	res,	onSuccess,	onError)	{

				service.get(id,	function(err,	game)	{

								if	(err)	{

												onError(err);

								}	else	{

												if	(game)	{

																onSuccess(game);

												}	else	{

																res.status(404).send('Non-existent	game	ID');

												}

								}

				});

};

router.get('/:id',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{	...	},

								next);

});

router.post('/:id/guesses',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{	...	},

								next);

});

router.delete('/:id',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{

												if	(game.setBy	===	req.user.id)	{

																game.remove((err)	=>	{

																				if	(err)	{

																								next(err);

																				}	else	{

																								res.send();

																				}

																});

												}	else	{

																res.status(403).send('You	don't	have	permission...');

												}

								},

								next);

});

router.get('/:id/created',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	res.render('createdGame',	game),

								next);

});

module.exports	=	router;

In	this	case,	the	changes	are	straightforward.	Each	call	to	a	games	service	function	now	passes	in
a	callback.	The	callback	contains	the	logic	that	used	to	follow	the	call	to	the	games	service
function.	Each	callback	also	needs	to	handle	the	possibility	of	an	error	value.	In	this	case,	we
simply	pass	it	to	the	Express	next	callback	so	it	will	be	handled	by	our	global	error	handler.

Although	these	changes	are	straightforward,	they	have	introduced	some	repetitive	boilerplate	to
our	code.	This	is	even	more	of	a	problem	in	the	index	route;	take	a	look	at	the	code	from
src/routes/index.js:

var	express	=	require('express');

var	router	=	express.Router();

var	games	=	require('../service/games.js');

router.get('/',	function(req,	res,	next)	{

		games.createdBy(req.user.id,	(err,	createdGames)	=>	{

				if	(err)	{

						next(err);

				}	else	{

						games.availableTo(req.user.id,	(err,	availableGames)	=>	{

								if	(err)	{

										next(err);

								}	else	{

										res.render('index',	{

												title:	'Hangman',

												userId:	req.user.id,

												createdGames:	createdGames,

												availableGames:	availableGames,

												partials:	{	createdGame:	'createdGame'	}

										});

								}

						});

				}

		});});

module.exports	=	router;

Here,	we	need	to	combine	the	result	of	two	different	asynchronous	calls.	This	leads	to	nested
callbacks.	We	also	have	to	repeat	the	error-handling	code	at	each	stage.	Note	also	that	we	only
start	the	second	asynchronous	operation	after	the	first	one	completes.	It	would	be	better	to	start
the	operations	in	parallel.

Recall	that,	while	JavaScript	itself	is	single-threaded,	asynchronous	operations	may	perform
work	in	parallel,	for	example,	network,	disk,	and	other	I/O	operations.	Running	multiple
operations	in	parallel	would	need	even	more	complicated	(and	error-prone)	boilerplate	code.
For	an	example	of	how	this	might	work,	consider	the	changes	to	make	the	beforeEach	function	in
the	games	service	test	asynchronous.	The	following	code	is	from
src/test/services/games.js:

describe('Game	service',	function()	{

				let	firstUserId	=	'user-id-1';

				let	secondUserId	=	'user-id-2';

				

				beforeEach(function(done)	{

								service.availableTo('not-a-user',	(err,	gamesAdded)	=>	{

												let	gamesDeleted	=	0;

												if	(gamesAdded.length	===	0)	{

																done();

												}

												gamesAdded.forEach(game	=>	{

																game.remove(()	=>	{

																				if	(++gamesDeleted	===	gamesAdded.length)	{

																								done();

																				}

																});

												});

								});

				});

				...

});

Here,	we	need	to	make	an	unknown	number	of	calls	to	the	asynchronous	remove	method.	The
done	callback	must	be	invoked	when	they	are	all	complete.	There	are	several	ways	of	achieving
this,	but	they	all	involve	additional	boilerplate.	The	approach	here	is	the	simplest	possible,

keeping	count	of	the	number	of	complete	operations.	Also	note	that	we	are	omitting	error
handling,	since	this	is	test	code.	In	production	code,	we	would	have	to	worry	about	error	handling
as	well,	making	things	even	more	complicated.

Note

There	are	other	changes	to	the	tests	to	make	use	of	the	new	asynchronous	interface	of	the	games
service.	They	are	excluded	here	for	brevity.	They	are	similar	to	the	changes	in	index.js.	You
can	see	a	full	set	of	changes	by	viewing	this	chapter's	first	commit	in	the	Git	repository	at
https://github.com/NodeJsForDevelopers/chapter08.

This	all	seems	quite	unsatisfactory.	Our	code	has	become	more	complicated,	repetitive,	and
harder	to	read.	Fortunately,	we	can	address	these	issues	by	using	a	different	approach	to	writing
asynchronous	code.

https://github.com/NodeJsForDevelopers/chapter08

Writing	cleaner	asynchronous	code	using
promises
Promises	are	an	alternative	pattern	to	callbacks	for	writing	asynchronous	code.	A	promise
represents	an	operation	that	hasn't	completed	yet	but	is	expected	to	do	so	in	the	future.	As	the
name	promise	suggests,	a	promise	is	a	contract	to	eventually	provide	a	value	or	a	reason	for
failure	(that	is,	an	error).	You	may	already	be	familiar	with	this	pattern	from	Tasks	in	.NET	or
Futures	in	Java.	A	promise	has	three	possible	states:

pending	represents	an	in-progress	operation
fulfilled	representing	a	successful	operation,	with	a	result	value
rejected	representing	an	unsuccessful	operation,	with	a	failure	reason

When	executing	a	single	operation,	the	callback-based	and	promise-based	approaches	appear
quite	similar.	The	power	of	promises	comes	when	combining	asynchronous	operations.

Consider	an	example	where	we	have	asynchronous	library	functions	for	obtaining,	processing,
and	aggregating	data.	We	want	to	perform	these	operations	in	turn	then	display	the	result,	handling
errors	as	we	go.	Using	callbacks,	it	might	look	like	this	(in	non-runnable,	fictional	code):

lib.getInitialData(function(e,	initialData)	{

		if	(e)	{

				console.log('Error:	'	+	e);

		}	else	{

				lib.processData(initialData,	(e,	processedData)	=>	{

						if	(e)	{

								console.log('Error:	'	+	e);

						}	else	{

								lib.aggregateData(processedData,	(e,	aggregatedData)	=>	{

										if	(e)	{

												console.log('Error:	'	+	e);

										}	else	{

												console.log('Success!	Result='	+	aggregatedData);

										}

								});

						}

				});

		}

});

This	has	many	of	the	same	problems	we	encountered	in	our	own	code	in	the	previous	section:
nested	callbacks,	extra	boilerplate,	and	repetitive	error-handling.	If	these	functions	instead
returned	promises,	the	equivalent	of	the	above	code	would	be	as	follows:

lib.getInitialData()

				.then(lib.processData)

				.then(lib.aggregateData)

				.then(function(aggregatedData)	{

								console.log('Success!	Result='	+	result);

				},	function(error)	{

								console.log('Error:	'	+	error);

				});

The	then	function	applies	a	function	to	the	resulting	value	of	a	promise,	returning	a	new	promise.
In	this	way,	we	construct	a	chain	of	promises	representing	a	series	of	operations.

The	then	function	takes	two	arguments,	which	are	both	callbacks.	If	the	asynchronous	operation
returns	an	error,	the	second	argument	will	be	invoked	instead.	In	the	above	example,	if	the
library.aggregateData	call	fails,	then	we	will	log	an	error.

If	the	second	then	callback	parameter	is	omitted,	any	errors	propagate	along	the	chain	of
promises.	In	the	above	example,	this	means	that	if	the	library.processData	call	fails,	then
library.aggregateData	will	not	be	called	and	our	error-logging	callback	will	still	be	invoked.

If	you	only	care	about	the	error	case,	you	can	just	specify	an	error	callback	using	the	catch
function	instead	of	then.	You	can	also	use	this	together	with	propagation	to	rewrite	the	preceding
code	more	clearly:

library.getInitialData()

				.then(library.processData)

				.then(library.aggregateData)

				.then(function(aggregatedData)	{

								console.log('Success!	Result='	+	result);

				})

				.catch(function(error)	{

								console.log('Error:	'	+	error);

				});

Here,	errors	at	any	point	propagate	to	a	final	promise	which	we	check	for	errors.	Note	that	this
rewritten	version	would	also	catch	any	errors	thrown	by	our	success-logging	callback,	which	the
preceding	version	would	not	have	done.	You	should	always	call	catch	at	the	end	of	a	promise
chain,	unless	you	are	returning	the	resulting	promise	object	to	be	consumed	elsewhere.

Implementing	promise-based	asynchronous	code
Let's	apply	the	promise	pattern	to	our	existing	application.	First,	we'll	need	to	update	our	game
service	API	to	expose	promises	instead	of	callbacks.	As	before,	this	is	straightforward	since	our
game	service	doesn't	actually	use	any	asynchronous	operations	in	its	implementation	(yet).	A
promised-based	version	of	our	games	service	looks	like	the	following	(in
src/services/games.js):

'use	strict';

const	games	=	[];

let	currentId	=	1;

class	Game	{

				...

				

				remove()	{

								games.splice(games.indexOf(this),	1);

								return	Promise.resolve();

				}

}

module.exports.create	=	(userId,	word)	=>	{

				const	newGame	=	new	Game(nextId++,	userId,	word);	

				games.push(newGame);

				return	Promise.resolve(newGame);

};

module.exports.get	=	(id)	=>

				Promise.resolve(

								games.find(game	=>	game.id	===	parseInt(id,	10)));

module.exports.createdBy	=	(userId)	=>

				Promise.resolve(games.filter(game	=>	game.setBy	===	userId));

module.exports.availableTo	=	(userId)	=>

				Promise.resolve(games.filter(game	=>	game.setBy	!==	userId));

Creating	a	promise-based	interface	is	even	simpler	than	a	callback-based	one.	We	can	create	a
promise	for	an	already	known	value	using	the	Promise.resolve()	function.	Each	function	in	our
games	service	looks	much	like	the	original	synchronous	version,	just	with	an	extra	call	to
Promise.resolve.

Note

If	you	pass	a	promise	argument	to	Promise.resolve,	then	you	get	back	a	promise	that	behaves
like	the	original	argument.	If	you	pass	any	other	value,	you	get	an	already	resolved	promise	for
that	value.	This	can	be	useful	if	you	need	to	operate	on	a	variable	that	might	be	a	promise	or	a
value.	You	can	pass	it	to	Promise.resolve,	then	treat	it	consistently	as	a	promise.

Consuming	the	promise	pattern

Now	we	need	to	update	the	rest	of	our	codebase	to	use	promises.	Let's	look	through	the	same	files
as	before,	starting	with	the	games	route.	See	the	following	code	from	src/routes/games.js:

'use	strict';

const	express	=	require('express');

const	router	=	express.Router();

const	service	=	require('../service/games.js');

router.post('/',	function(req,	res,	next)	{

				let	word	=	req.body.word;

				if	(word	&&	/^[A-Za-z]{3,}$/.test(word))	{

								service.create(req.user.id,	word)

												.then(game	=>

																res.redirect(`/games/${game.id}/created`))

												.catch(next);

				}	else	{

								res.status(400).send('Word	must	be	at	least	three	characters	long	and	

contain	only	letters');

				}

});

const	checkGameExists	=	function(id,	res,	onSuccess,	onError)	{

				service.get(id)

								.then(game	=>	{

												if	(game)	{

																onSuccess(game);

												}	else	{

																res.status(404).send('Non-existent	game	ID');

												}

								})

								.catch(onError);

};

...

router.delete('/:id',	function(req,	res,	next)	{

				checkGameExists(

								req.params.id,

								res,

								game	=>	{

												if	(game.setBy	===	req.user.id)	{

																game.remove()

																				.then(()	=>	res.send())

																				.catch(next);

												}	else	{

																res.status(403).send('You	do	not	have	permission	to	delete	

this	game');

												}

								},

								next);

});

This	file	was	the	simplest	before,	so	shows	the	least	difference	here.	We	still	have	a	little
repetition	of	boilerplate	(for	example,	the	catch	call).	Still,	the	promise-based	approach	is	more
compact	and	readable	than	with	callbacks.	Now	let's	look	at	the	index	route	code	from
src/routes/index.js:

var	express	=	require('express');

var	router	=	express.Router();

var	games	=	require('../service/games.js');

router.get('/',	function(req,	res,	next)	{

				games.createdBy(req.user.id)

								.then(gamesCreatedByUser	=>	

												games.availableTo(req.user.id)

																.then(gamesAvailableToUser	=>	{

																				res.render('index',	{

																								title:	'Hangman',

																								userId:	req.user.id,

																								createdGames:	gamesCreatedByUser,

																								availableGames:	gamesAvailableToUser

																				});

																}))

								.catch(next);

});

module.exports	=	router;

This	is	a	little	better.	There	is	less	repetition,	but	still	some	nesting	and	boilerplate.	Note	that	the
outermost	then	callback	returns	a	promise	(chained	from	games.availableTo).	When	a	then
callback	returns	a	promise,	this	is	effectively	flattened,	so	the	overall	promise	returns	the	value	of
the	inner	promise.	This	flattening	also	applies	to	the	propagation	of	errors,	so	we	don't	need	to
call	catch	on	the	inner	promise	explicitly.

This	code	is	still	a	little	confusing	to	follow.	There	is	actually	a	way	to	make	it	much	more
readable,	which	we'll	come	back	to	shortly.	Let's	first	look	at	the	beforeEach	function	in	the
games	service	test	in	the	following	code	from	test/service/games.js:

describe('Game	service',	function()	{

				let	firstUserId	=	'user-id-1';

				let	secondUserId	=	'user-id-2';

				

				beforeEach(function(done)	{

								service.availableTo('non-existent-user')

												.then(games	=>	games.map(game	=>	game.remove()))

												.then(gamesRemoved	=>	Promise.all(gamesRemoved))

												.then(()	=>	done(),	done);

				});

});

This	has	become	much	shorter	and	more	linear.	Let's	break	down	what	each	line	does:

service.availableTo	returns	a	promise	of	an	array	of	games
The	first	then	callback	uses	array.map	to	convert	this	into	a	promise	of	an	array	of
promises	of	delete	operations
The	next	then	callback	uses	Promise.all	to	convert	this	into	a	single	promise	for	the
whole	array	of	delete	operations

Note

The	Promise.all	function	takes	an	array	of	promises	and	returns	a	promise	that	resolves
when	all	of	the	promises	in	the	array	have	resolved	or	is	rejected	as	soon	as	any	promise	in
the	array	is	rejected.

The	final	then	callback	is	invoked	when	the	promise	returned	from	Promise.all	resolves,
that	is,	when	all	the	delete	operations	are	complete,	and	invokes	Mocha's	done	callback

Note	that	unlike	with	the	callback-based	approach,	it	is	also	trivial	to	implement	error	handling.
We	just	pass	in	the	done	callback	as	the	error	handler	(second	argument)	to	the	final	then	call.
We	can	take	a	similar	approach	in	the	tests	themselves	as	we've	done	here	with	the	beforeEach
callback.	Again,	the	updates	to	the	tests	are	omitted	for	brevity,	but	you	can	find	them	in	the
book's	companion	code.

Parallelising	operations	using	promises
We	can	also	make	use	of	the	Promise.all	function	to	simplify	the	index	route.	Recall	that	our
code	is	invoking	the	two	asynchronous	operations	one	after	the	other.	In	the	callback-based
approach,	attempting	to	execute	these	in	parallel	would	have	made	the	code	even	more
complicated.	With	promises,	it	actually	makes	our	code	more	readable:

var	express	=	require('express');

var	router	=	express.Router();

var	games	=	require('../service/games.js');

router.get('/',	function(req,	res,	next)	{

				Promise.all([

								games.createdBy(req.user.id),

								games.availableTo(req.user.id)

])

								.then(results	=>	{

												res.render('index',	{

																								title:	'Hangman',

																								userId:	req.user.id,

																								createdGames:	results[0],

																								availableGames:	results[1]

																				});

																})

								.catch(next);

});

module.exports	=	router;

This	is	shorter	and	much	easier	to	understand.	We	kick	off	two	asynchronous	operations	to	load
data,	then	make	use	of	the	data	as	soon	as	both	operations	have	completed.

Tip

The	only	slight	drawback	of	the	preceding	approach	is	that	we	have	to	get	each	of	the	two	values
back	out	of	the	array	by	their	index.	In	Node.js	v6	or	higher,	we	could	avoid	this	and	make	the
code	more	readable	still	by	using	destructuring	to	assign	two	named	parameters	from	the	values
in	the	array,	as	follows:

								.then(([created,	available])	=>	{	...

This	isn't	used	in	the	example	above	for	back-compatibility	with	Node.js	v4.	We	will	discuss
destructuring	in	more	detail	in	Chapter	14,	Node.js	and	Beyond.

Combining	asynchronous	programming	patterns
Promises	allow	us	to	address	some	of	the	shortcomings	of	the	callback	pattern	and	write	more
readable	code.	Now	we	have	a	new	problem,	though.	One	of	the	merits	of	Node.js	is	the
consistent	approach	to	asynchronous	programming.	We	seem	to	have	negated	this	by	introducing
promises	as	well	as	the	conventional	callback	pattern.

Furthermore,	although	native	promises	are	new	to	ECMAScript	2015,	the	concept	is	not	new.
There	are	many	pre-existing	libraries	that	provide	their	own	implementation	of	promises.

Fortunately,	these	competing	approaches	to	asynchronous	programming	are	actually	very
consistent.	The	biggest	value	of	the	consistency	in	the	Node.js-style	callback	pattern	comes	from
the	following:

All	library	functions	are	asynchronous	(non-blocking)	by	default
All	asynchronous	operations	return	a	single	value	or	an	error

Promises	are	completely	consistent	with	the	above	points.	There	is	also	excellent	compatibility
between	different	implementations	of	promises	in	JavaScript.	This	is	thanks	to	the	Promises/A+
specification	(http://promisesaplus.com).	This	essentially	defines	the	behavior	of	the	then
method.	Any	promise	library	you	are	likely	to	come	across	will	follow	this	spec.	Native
JavaScript	promises	are	also	designed	to	be	compatible	with	it.	These	means	that	all	of	these
libraries	and	native	JavaScript	promises	are	interoperable.

So	all	libraries	using	callbacks	follow	the	same	convention	and	all	promise	libraries	follow	the
same	specification.	The	only	issue	remaining	is	converting	between	promises	and	callbacks.
There	are	several	promise	libraries	that	can	do	this	for	us.

If	you	just	want	to	convert	a	few	standard	callback	functions	to	promises,	you	can	use	denodeify,
which	can	be	installed	using	npm.	Our	fs.stat	example	from	earlier	would	look	like	this:

const	denodeify	=	require('denodeify');

const	stat	=	denodeify(require('fs').stat));

stat('/hello/world')

				.then(stats	=>	console.log('File	last	updated	at:	'	+	stats.mtime));

You	will	also	find	that	many	libraries	expose	functions	that	can	return	a	promise	or	accept	a
callback	and	so	can	be	invoked	with	either	pattern.

http://promisesaplus.com

Summary
In	this	chapter,	we	have	seen	how	to	expose	the	standard	Node.js	callback	interface	in	our	own
modules.	We	have	made	use	of	promises	to	produce	more	readable	asynchronous	code.	Finally,
we	have	seen	how	we	can	use	promises	together	with	standard	Node.js	callbacks.

Now	that	we	can	implement	our	own	asynchronous	APIs,	we	can	expand	on	our	application	and
start	making	use	of	other	libraries	that	provide	asynchronous	interfaces.	In	the	next	chapter,	we
will	make	use	of	this	to	introduce	persistent	storage	to	our	application.

Chapter	9.	Persisting	Data
Most	applications	need	to	persist	some	kind	of	data.	In	this	chapter,	we'll	be	looking	at	some
approaches	to	data	persistence	for	Node.js	applications.

The	default	choice	for	persistence	for	a	long	time	has	been	the	traditional	relational	database.	You
may	have	used	RDBMSs	(relational	database	management	systems)	such	as	Microsoft	SQL
Server,	Oracle,	MySQL	or	PostgreSQL.	These	systems	are	often	categorized	as	SQL	databases
since	they	all	use	SQL	as	their	primary	query	language.

More	recently,	there	has	been	a	proliferation	of	so-called	NoSQL	databases.	This	umbrella	term
isn't	particularly	useful	as	a	category.	Some	NoSQL	databases	have	no	more	in	common	with	each
other	than	with	traditional	relational	databases.

What's	interesting	is	the	range	of	databases	available	and	the	use	cases	they	fulfil.	Traditional
RDBMSs	are	as	powerful	and	flexible	as	ever	and	the	right	choice	for	many	situations.	In	this
chapter,	we'll	consider	two	other	types	of	database,	along	with	how	and	when	to	make	use	of
them.

The	systems	we'll	be	looking	at	are	MongoDB	and	Redis.	Both	of	these	had	their	initial	release
in	2009	and	are	now	widely-used.	Covering	either	of	them	in	depth	would	justify	a	book	in	itself.
The	aim	of	this	chapter	is	to	provide	an	introduction	to	and	high-level	overview	of	each.

In	this	chapter,	we	will	cover	the	following	topics:

The	conceptual	data	model	used	by	each	of	these	systems
The	use	cases	for	which	they	provide	the	most	benefit
Integrating	them	with	an	Express	application
Testing	data	persistence	code

Introducing	MongoDB
MongoDB	is	a	document-oriented	DBMS.	MongoDB	documents	are	stored	as	binary	JSON
(BSON).	This	is	similar	to	JSON,	but	with	support	for	additional	data	types.	JSON	field	values
can	only	be	strings,	numbers,	objects,	arrays,	Booleans,	or	null.	BSON	supports	more	specific
numeric	types,	dates	and	timestamps,	regular	expressions,	and	binary	data.	As	the	name	suggests,
BSON	documents	are	stored	and	transferred	as	binary	data.	This	can	be	more	efficient	than
JSON's	string	representation.

MongoDB	documents	are	stored	in	collections.	These	work	very	much	like	tables	in	a	traditional
relational	database.	Documents	can	be	inserted,	updated,	and	queried.	There	are	two	key
differences	from	a	traditional	relational	database:

MongoDB	does	not	support	server-side	joins.	In	a	traditional	RDBMS,	you	would	normalize
data	into	multiple	tables	and	join	across	them	using	foreign	keys.	In	MongoDB,	you	instead
use	BSON's	nested	structure	to	denormalize	data	about	each	entity	into	a	single	document.
The	relational	property	of	a	relational	database	is	that	all	rows	in	a	table	contain	the	same
fields	with	the	same	meaning.	In	MongoDB,	documents	can	have	any	set	of	fields.

In	practice,	documents	in	the	same	collection	typically	have	the	same	fields	or	at	least	a	common
core	set	of	fields.	MongoDB	supports	the	creation	of	indexes	on	common	fields	in	a	collection	to
make	querying	more	efficient.

Why	choose	MongoDB?
There	are	several	properties	of	MongoDB	that	make	it	an	appealing	choice	for	some	use	cases,
especially	in	Node.js-based	applications.	We'll	cover	these	in	this	section.

Object	modeling

MongoDB's	document-based	approach	can	be	a	good	fit	for	persisting	domain	entities.	You	may
have	experience	of	storing	domain	entities	in	a	relational	database	using	an	Object-Relational
Mapper	(ORM).	Hibernate	and	Entity	Framework	are	popular	examples	of	ORMs.	One	of	the
jobs	performed	by	an	ORM	is	mapping	a	single	entity	to	multiple	tables	in	a	normalized	schema.
When	an	entity	is	loaded	from	the	database,	it	is	reconstructed	via	JOIN	queries	between	these
tables.	This	is	one	of	the	key	features	of	ORMs.	It	is	also	one	of	the	most	common	sources	of
configuration	problems	and	performance	issues	when	using	an	ORM.	MongoDB	persists	each
entity	as	a	single	document,	which	can	be	much	simpler.

Of	course,	cross-table	joins	can	also	be	useful	for	traversing	relationships	between	entities.
While	ORMs	typically	make	this	easy,	this	can	itself	be	a	source	of	performance	problems.
Implicit	loading	of	related	entities	often	causes	N+1	problems,	issuing	thousands	of	DB	queries.
Handling	these	relationships	well	requires	careful	thought,	whatever	kind	of	database	you	are
using.

When	using	an	ORM	and	an	RDBMS,	all	inter-entity	relationships	are	foreign	keys,	but	you	need
to	think	carefully	about	how	to	load	them.	When	modeling	data	in	MongoDB,	you	must	choose
between	embedded	documents	or	document	references	for	inter-entity	relationships.	Under	either
tech	stack,	the	design	decisions	depend	on	the	data	access	requirements	of	your	application	and
designing	the	data	model	to	reduce	the	prevalence	of	inter-entity	relationships	will	simplify
matters.

JavaScript

MongoDB	is	a	good	fit	for	Node.js	in	particular.	The	use	of	a	JSON-like	format	maps	well	to	a
JavaScript-based	programming	environment.	MongoDB	itself	also	runs	JavaScript	natively.
Database	operations	can	make	use	of	custom	JavaScript	functions	that	execute	on	the	server.

Scalability

MongoDB	also	scales	in	a	similar	manner	to	Node.js.	It	uses	partitioning	and	replication	to
support	horizontal	scaling	on	commodity	hardware.	There	is	no	technical	reason	why	your
application	and	database	have	to	scale	in	the	same	way,	but	it	may	be	easier	to	plan	for
scalability	from	a	business	perspective.

When	using	an	RDBMS,	it	is	more	straightforward	to	scale	the	database	vertically.	That	means
provisioning	a	high-powered	database	server	that	can	support	multiple	application	servers.	This
requires	more	careful	planning	and	more	up-front	investment	than	linearly	scaling	application	and
database	servers	horizontally	together.

Getting	started	with	MongoDB
Visit	https://www.mongodb.org/downloads	to	download	and	install	the	latest	version	of	the
MongoDB	Community	Server	edition	for	your	operating	system.	There	are	more	detailed
installation	instructions	in	the	user	manual	at	https://docs.mongodb.org/manual/installation/.

The	commands	in	the	rest	of	this	section	make	use	of	executables	in	MongoDB's	/bin	directory.
You	can	run	the	commands	in	this	directory	or,	better	still,	add	it	to	your	PATH.

Create	a	directory	for	MongoDB	to	store	its	data.	Then	start	the	MongoDB	daemon	process	(that
is,	service),	providing	the	path	of	that	directory	as	follows:

>	mongod	--dbpath	C:\data\mongodb

Using	the	MongoDB	shell

You	can	interact	with	MongoDB	from	the	console	using	its	built-in	shell	application.	You	can
launch	the	MongoDB	shell	by	running	the	mongo	command,	as	follows:

>	mongo	demo

This	will	connect	to	a	database	named	demo	(creating	it,	if	necessary)	on	the	local	server.	If	you
don't	specify	a	database,	then	the	shell	connects	to	a	database	named	test.

The	first	thing	to	notice	is	that	the	shell	is	just	another	JavaScript	environment.	We	can	try	running
some	of	the	same	commands	as	at	the	beginning	of	Chapter	2,	Getting	Started	with	Node.js.

>	function	square(x)	{	return	x*x;	}

>	square(42)

1764

>	new	Date()

ISODate("2016-01-01T20:05:39.652Z")

>	var	foo	=	{	bar:	"baz"	}

>	typeof	foo

object

>	foo.bar

baz

Just	as	Node.js	builds	on	JavaScript	in	ways	that	make	it	more	suitable	for	server-side
application	development,	MongoDB	adds	features	more	useful	to	data	persistence.	Note	that	new
Date()	in	the	preceding	code	returns	an	ISODate,	MongoDB's	standard	datatype	for	representing
dates	in	BSON	documents.

You	can	quit	the	console	by	typing	exit	at	any	time.

MongoDB	also	adds	some	new	global	variables	for	interacting	with	the	database.	The	most
important	of	these	is	the	db	object.	Let's	try	adding	some	documents	to	our	database.	Recall	that
MongoDB	stores	documents	in	collections.	To	create	a	new	collection,	we	just	need	to	start
inserting	documents	into	it.	For	a	simple	example,	we'll	use	the	UK	bank	holidays	for	2016.	We

https://www.mongodb.org/downloads
https://docs.mongodb.org/manual/installation/

can	populate	this	collection	using	the	following	script:

db.holidays.insert(

		{	name:	"New	Year's	Day",	date:	ISODate("2016-01-01")	});

db.holidays.insert(

		{	name:	"Good	Friday",	date:	ISODate("2016-03-25")	});

db.holidays.insert(

		{	name:	"Easter	Monday",	date:	ISODate("2016-03-28")	});

db.holidays.insert(

		{	name:	"Early	May	bank	holiday",	date:	ISODate("2016-05-02")	});

db.holidays.insert(

		{	name:	"Spring	bank	holiday",	date:	ISODate("2016-05-30")	});

db.holidays.insert(

		{	name:	"Summer	bank	holiday",	date:	ISODate("2016-08-29")	});

db.holidays.insert(

		{	name:	"Boxing	Day",	date:	ISODate("2016-12-26")	});

db.holidays.insert(

		{	name:	"Christmas	Day",	date:	ISODate("2016-12-27"),

				substitute_for:	ISODate("2016-12-25")	});

Note	that	Christmas	Day	falls	on	a	Sunday	in	2016,	so	the	bank	holiday	occurs	on	the	next
working	day.	This	gives	us	a	reason	to	have	another	field	that	is	only	relevant	to	some	documents
in	the	collection.

You	could	type	these	insert	commands	into	the	console	manually,	but	it's	easier	to	tell
MongoDB	to	load	them	from	a	script	file:

>	mongo	demo	holidays.js	--shell

The	previous	command	connects	to	a	database	named	demo,	runs	the	holiday.js	script
(available	in	the	book's	companion	code),	then	opens	a	shell	to	allow	us	to	interact	with	the
database.	We	can	view	the	complete	contents	of	the	collection	by	running	the	following	command
in	the	MongoDB	console:

>	db.holidays.find()

{	"_id"	:	ObjectId("572f760fffb6888d70c45eeb"),	"name"	:	"New	Year's	Day",	

"date"	:	ISODate("2016-01-01T00:00:00Z")	}

{	"_id"	:	ObjectId("572f7610ffb6888d70c45eec"),	"name"	:	"Good	Friday",	

"date"	:	ISODate("2016-03-25T00:00:00Z")	}

...

Note	that	MongoDB	has	automatically	added	an	_id	field	to	each	document	for	us.

Tip

You	can	see	how	MongoDB	does	this	by	viewing	the	source	of	the	insert	method.	Just	type
db.holidays.insert	into	the	shell	(with	no	parentheses).

We	can	pull	out	records	by	their	_id	or	other	single	fields:

>	db.holidays.find({name:	"Boxing	Day"})

This	will	return	any	objects	that	match	the	object	passed	to	find.	To	look	up	documents	by
something	other	than	exact	equality,	we	can	use	MongoDB's	query	operators.	These	are	prefixed
with	the	dollar	symbol	and	specified	as	object	properties.	For	example,	to	find	holidays	in	the
second	half	of	the	year,	we	can	use	the	greater	than	or	equal	to	operator	as	follows:

>	db.holidays.find({	date:	{	$gte:	new	Date("2016-07-01")	}})

MongoDB's	aggregation	pipeline	allows	us	to	build	complex	queries	from	a	sequence	of
operations	called	pipeline	stages.	It	is	the	closest	thing	in	MongoDB	to	complex	querying	in
SQL.	Here,	we	count	the	number	of	bank	holidays	in	each	month	using	MongoDB's	$group
pipeline	stage,	which	is	similar	to	SQL's	GROUP	BY	clause:

>	db.holidays.aggregate({

				$group:	{	_id:	{	$month:	"$date"	},	count:	{	$sum:	1	}	}})

An	odd	quirk	of	the	calendar	in	2016	means	that	the	Christmas	Day	Bank	Holiday	actually	comes
after	Boxing	Day	(since	Christmas	Day	itself	is	on	a	Sunday).	In	the	following	example,	we	order
bank	holidays	by	the	date	of	the	occasion	that	they	mark	(stored	in	the	$substitute_for	field	if
different	from	the	date	of	the	bank	holiday):

>	db.holidays.aggregate([

				{	$project:	{	_id:	false,	name:	"$name",

										date:	{	$ifNull:	["$substitute_for",	"$date"]	}	}	},

				{	$sort:	{	date:	1	}	}

])

The	previous	pipeline	consists	of	two	stages:

The	$project	stage	specifies	a	set	of	fields	based	on	the	underlying	data	(similar	to	SELECT
in	SQL).	Note	that	the	_id	field	is	included	by	default,	but	we	exclude	it	here.
The	$sort	stage	specifies	a	sort	field	and	direction	(similar	to	SQL's	SORT	BY	clause).	The
1	here	indicates	an	ascending	sort	order.

We	have	just	scratched	the	surface	here.	There	are	many	more	pipeline	phases	available	in
MongoDB.	You	can	find	out	more	about	aggregation	in	the	MongoDB	documentation	at
https://docs.mongodb.com/manual/core/aggregation-pipeline/.

MongoDB	also	has	a	built-in	Map-Reduce	function	for	powerful	aggregate	data	processing	using
arbitrary	JavaScript	functions.	This	is	beyond	the	scope	of	this	book,	but	you	can	find	out	more
about	Map-Reduce	and	MongoDB's	implementation	of	it	at
https://docs.mongodb.com/manual/core/map-reduce/.

https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/core/map-reduce/

Using	MongoDB	with	Express
The	games	service	module	in	our	application	currently	stores	all	its	data	in	memory.	This	worked
well	enough	for	demo	purposes,	but	isn't	suitable	for	a	real	application.	We	lose	all	the	data
whenever	the	application	restarts.	It	also	prevents	us	from	scaling	our	application	across	multiple
processes.	Each	instance	would	have	its	own	game	service	with	different	data.	Users	would	see
different	data	depending	on	which	server	happened	to	handle	their	request.

We're	going	to	update	our	games	service	to	store	its	data	in	MongoDB.	For	this,	we're	going	to
make	use	of	a	library	called	Mongoose.

Persisting	objects	with	Mongoose
Recall	that,	unlike	a	relational	database,	MongoDB	does	not	require	documents	in	the	same
collection	to	have	the	same	fields.	However,	we	do	typically	expect	most	items	within	a
collection	to	share	at	least	a	common	core	of	fields.

Mongoose	is	an	object	modeling	library	for	storing	entities	in	MongoDB.	It	helps	with	writing
common	functionality	such	as	validation,	query	building,	and	type	casting.	It	also	provides	hooks
for	associating	business	logic	with	our	entities.	These	are	similar	to	some	of	the	features
provided	by	ORMs	such	as	Entity	Framework	or	Hibernate.	Mongoose	itself	is	not	an	ORM,
though.	Recall	that	object-relational	mapping	is	not	relevant	for	document-oriented	databases
such	as	MongoDB.

To	use	Mongoose,	we	start	by	defining	a	schema.	This	defines	the	common	fields	for	documents
within	a	MongoDB	collection.	Returning	to	our	demo	application	from	the	preceding	chapters,
let's	install	Mongoose	and	define	a	schema	for	our	games	collection:

>	npm	install	mongoose	--save

The	following	code	is	added	to	src/services/games.js:

'use	strict';

const	mongoose	=	require('mongoose');

const	Schema	=	mongoose.Schema;

const	gameSchema	=	new	Schema({

				word:	String,

				setBy:	String

});

The	schema	defines	document	fields	and	specifies	the	type	of	each	field.	To	start	persisting
documents	with	this	schema,	we	need	to	create	a	model.

Models	are	constructors	that	correspond	to	a	MongoDB	collection.	Instances	of	a	Mongoose
model	correspond	to	documents	in	that	collection.	Models	also	provide	functions	for	modifying
the	collection.	We	create	a	model	by	specifying	the	schema	and	(singular)	collection	name:

const	gameSchema	=	new	Schema({

				word:	String,

				setBy:	String

});

const	Game	=	mongoose.model('Game',	gameSchema);

The	Model	constructor	replaces	our	Game	class	and	constructor	from	before.	This	class	also
contained	two	instance	methods:	positionsOf	and	remove.	We	can	define	custom	instance
methods	on	a	schema,	which	will	be	available	on	all	model	instances.	These	must	be	defined
before	creating	the	model:

const	gameSchema	=	new	Schema({

				word:	String,

				setBy:	String

});

gameSchema.methods.positionsOf	=	function(character)	{

				let	positions	=	[];

				for	(let	i	in	this.word)	{

								if	(this.word[i]	===	character.toUpperCase())	{

												positions.push(i);

								}

				}

				return	positions;

};

const	Game	=	mongoose.model('Game',	gameSchema);

Note

Note	that	we	use	a	traditional	function	definition	rather	than	an	arrow	function	in	the	preceding
code.	This	is	necessary	in	order	for	the	this	keyword	inside	the	function	to	work	correctly.	See
http://derickbailey.com/2015/09/28/do-es6-arrow-functions-really-solve-this-in-javascript/	for
more	details.

We	don't	need	to	define	a	remove	method	anymore,	because	Mongoose	provides	this
automatically.	It	also	provides	a	save	method,	which	we	can	use	for	persisting	new	games:

const	Game	=	mongoose.model('Game',	gameSchema);

module.exports.create	=	(userId,	word)	=>	{

		let	game	=	new	Game({setBy:	userId,	word:	word.toUpperCase()});

		return	game.save();

};

We	don't	need	to	specify	an	ID	anymore,	since	this	is	also	provided	by	Mongoose.	Note	that	we
do	need	to	specify	word.toUpperCase(),	which	used	to	be	in	the	Game	constructor.	This	isn't	a
problem,	since	the	constructor	is	private	to	our	module.	No	code	outside	the	module	can	invoke
the	constructor	directly.	Where	the	toUpperCase	call	takes	place	is	just	an	implementation	detail.

Also	note	that	Mongoose's	async	operations	all	return	promises	as	an	alternative	to	using
callbacks.	Mongoose	supports	both	of	the	asynchronous	programming	patterns	discussed	in	the
previous	chapter.	Mongoose	uses	its	own	implementation	of	promises.	We	can	configure
Mongoose	to	use	ECMAScript	6	promises,	though.	We	also	need	to	tell	Mongoose	to	connect	to	a
MongoDB	database.	For	now,	we	will	hardcode	the	URL,	but	we'll	see	how	to	make	this
configurable	shortly:

const	mongoose	=	require('mongoose');

mongoose.Promise	=	Promise;

mongoose.connect('mongodb://localhost/hangman');

Finally,	we	need	to	implement	our	three	methods	for	retrieving	games	from	the	database.	We	can

http://derickbailey.com/2015/09/28/do-es6-arrow-functions-really-solve-this-in-javascript/

do	this	using	Mongoose's	find	method:

module.exports.create	=	(userId,	word)	=>	{

				...

};

module.exports.createdBy	=

				(userId)	=>	Game.find({setBy:	userId});

module.exports.availableTo	=

				(userId)	=>	Game.find({setBy:	{	$ne:	userId	}	});

module.exports.get	=

				(id)	=>	Game.findById(id);

The	Mongoose	find	method	works	like	the	MongoDB	find	method	we	saw	in	the	previous
section,	Using	the	MongoDB	shell.	It	takes	a	set	of	MongoDB	query	conditions	and
asynchronously	provides	a	list	of	documents.	findById	takes	an	ID	and	asynchronously	provides
a	single	document,	or	null.

Mongoose	also	provides	a	where	method	for	building	up	conditions	through	function	calls.	The
availableTo	function	can	be	rewritten	as	follows:

module.exports.availableTo	=

		(userId)	=>	Game.where('setBy').ne(userId);

As	long	as	you	still	have	MongoDB	running	locally	(as	described	in	Getting	started	with
MongoDB	earlier	in	the	chapter),	you	should	now	be	able	to	run	the	application.	Try	stopping	and
restarting	the	application	and	notice	that	games	are	now	persisted	between	restarts.

Isolating	persistence	code
It's	useful	to	integrate	with	a	real	database	to	make	sure	our	persistence	code	is	working.	But	it's
not	always	appropriate	for	our	tests	to	be	dependent	on	an	external	MongoDB	instance.

We	want	developers	to	be	able	to	check	out	the	code	and	run	the	application	without	needing	to
run	a	database	instance.	Also,	external	dependencies	slow	down	our	tests.	MongoDB	stores	data
on	disk,	so	introduces	additional	I/O	work	into	our	tests.

The	application	should	depend	on	an	external	database	in	production.	In	integration,	we	want	to
use	a	real	database	on	the	local	server.	On	development	machines,	it	would	be	better	to	use	an	in-
memory	database	by	default.	So	we	need	to	be	able	to	configure	a	database	URL	and	fall	back	to
an	in-memory	database	in	development	environments.

Finally,	we	need	to	initialize	Mongoose	before	using	it	in	our	games	service.	This	includes
specifying	the	database	URL	and	waiting	for	a	connection	to	be	established.	This	happens
asynchronously,	so	can't	be	part	of	the	games	service	module	definition.	We	also	don't	want
clients	of	the	games	service	to	have	to	pass	in	a	Mongoose	instance	to	each	function	call.

We	can	address	all	of	these	issues	by	introducing	dependency	injection	to	our	application.	We'll
pass	in	the	game	service	as	a	dependency	to	the	modules	that	need	it	and	pass	in	Mongoose	as	a
dependency	to	the	games	service.

Tip

This	would	also	give	us	the	option	of	writing	unit	tests	for	other	modules	that	pass	in	a	test	double
for	the	games	service	itself,	so	don't	use	MongoDB	at	all.	In	larger	applications,	this	kind	of	test
isolation	is	important	for	writing	fast	and	maintainable	tests.

Dependency	injection	in	Node.js
You	may	have	used	dependency	injection	(DI)	frameworks	such	as	Unity,	Autofac,	NInject,	or
Spring	in	.NET	or	Java.	These	provide	features	such	as	declarative	configuration	and	auto	wiring
of	dependencies.	There	are	similar	DI	containers	available	for	JavaScript.	However,	it	is	more
common	to	pass	around	dependencies	explicitly.	JavaScript's	module	pattern	makes	this	approach
more	natural	than	in	other	languages.	We	don't	need	to	add	a	lot	of	fields	and
constructors/properties	to	set	up	dependencies.	We	can	just	wrap	modules	in	an	initialization
function	that	takes	dependencies	as	parameters.

In	our	application,	the	app	module	will	wire	everything	together.	The	application	as	a	whole
depends	on	the	database.	The	games	and	index	routes	depend	on	the	game	service.	To	allow	the
routes	to	take	a	dependency	on	the	game	service,	we	just	need	to	top	and	tail	them	with	a	function:

'use	strict';

module.exports	=	(gamesService)	=>	{

				var	express	=	require('express');

				var	router	=	express.Router();

				...

				return	router;

};

The	games	service	itself	is	slightly	more	complicated.	We	previously	added	several	functions	to
module.exports,	so	we	need	to	put	these	on	an	object	instead.	However,	this	actually	results	in
shorter	code.	Also,	note	that	we	only	create	the	Game	schema	if	it	hasn't	already	been	defined,	to
defend	against	our	exported	function	being	called	multiple	times:

module.exports	=	(mongoose)	=>	{

				'use	strict';

				

				let	Game	=	mongoose.models['Game'];

				if	(!Game)	{

								const	Schema	=	mongoose.Schema;

								const	gameSchema	=	new	Schema({

												word:	String,

												setBy:	String

								});

								gameSchema.methods.positionsOf	=	function(character)	{

												...

								};

								

								Game	=	mongoose.model('Game',	gameSchema);

				}

				

				return	{

						create:	(userId,	word)	=>	{

												const	game	=	new	Game({

																setBy:	userId,	word:	word.toUpperCase()

												});

												return	game.save();

								},

								createdBy:	userId	=>	Game.find({setBy:	userId}),

								availableTo:	userId	=>	Game.where('setBy').ne(userId),

								get:	id	=>	Game.findById(id)

				};

};

Finally,	the	application	itself	depends	on	the	database	connection	and	wires	up	the	other
dependencies:

module.exports	=	(mongoose)	=>	{

				...

				let	gamesService	=	require('./services/games')(mongoose);

				let	routes	=	require('./routes/index')(gamesService);

				let	games	=	require('./routes/games')(gamesService);

				...

				return	app;

};

Providing	dependencies
We	can	specify	the	database	URL	in	an	environment	variable.	When	this	isn't	present,	our
application	will	instead	make	use	of	an	in-memory	instance	of	MongoDB.	This	will	be	provided
by	a	library	called	Mockgoose.	We	install	this	as	a	dev	dependency,	in	case	we	forget	to	set	our
environment	variable	on	a	production	server.	We'll	get	an	error	rather	than	quietly	using	a	non-
persistent	database.

>	npm	install	mockgoose@~5.x	--save-dev

We	create	a	new	module	under	src/config/mongoose.js	to	initialize	Mongoose	and	return	a
promise	that	will	be	fulfilled	when	it	has	connected	to	the	database:

'use	strict';

const	mongoose	=	require('mongoose');

const	debug	=	require('debug')('hangman:config:mongoose');

mongoose.Promise	=	Promise;

if	(!process.env.MONGODB_URL)	{

				debug('MongoDB	URL	not	found.	Falling	back	to	in-memory	database...');

				require('mockgoose')(mongoose);

}

let	db	=	mongoose.connection;

mongoose.connect(process.env.MONGODB_URL);

module.exports	=	new	Promise(function(resolve,	reject)	{

				db.once('open',	()	=>	resolve(mongoose));

				db.on('error',	reject);

});

Now	we	just	need	to	pass	this	into	our	application.	The	following	is	the	code	from	bin/www:

...

require('../src/config/mongoose').then((mongoose)	=>	{

				var	app	=	require('../src/app')(mongoose);

				...

				server.on('listening',	onListening);

}).catch(function(error)	{

				console.log(error);

				process.exit(1);

});

To	allow	our	tests	to	run,	we'll	also	need	to	add	new	before	functions	to	make	use	of	this
module.	The	following	code	is	from	test/services/games.js:

'use	strict';

const	expect	=	require('chai').expect;

describe('Game	service',	()	=>	{

		const	firstUserId	=	'user-id-1';

		const	secondUserId	=	'user-id-2';

				

		let	service;

		before(done	=>	{

				require('../../src/config/mongoose.js').then((mongoose)	=>	{

						service	=	require('../../src/services/games.js')(mongoose);

						done();

				}).catch(done);;

		});

		...

The	following	code	is	from	test/routes/games.js:

'use	strict';

const	request	=	require('supertest');

const	expect	=	require('chai').expect;

describe('/games',	()	=>	{

		let	agent,	userId;

		let	mongoose,	gamesService,	app;

				

		before(function(done)	{

				require('../../src/config/mongoose.js').then((mongoose)	=>	{

						app	=	require('../../src/app.js')(mongoose);

						gamesService	=

								require('../../src/services/games.js')(mongoose);

						done();

				}).catch(done);

		});

				

				...

We'll	also	add	a	global	teardown	function	to	close	the	database	connection	after	all	tests	have
finished.	This	is	just	a	Mocha	after	hook	outside	the	context	of	any	describe	block.	We	add	this
in	a	new	file	under	test/global.js:

'use	strict';

after(function(done)	{

				require('../src/config/mongoose.js').then(

								(mongoose)	=>	mongoose.disconnect(done));

});

Finally,	we	need	to	update	our	gulpfile.js,	to	allow	our	integration	tests	to	run	with	the	new
dependency:

gulp.task('integration-test',

								['lint-integration-test',	'test'],	function(done)	{

				const	TEST_PORT	=	5000;

				

				require('./src/config/mongoose.js').then((mongoose)	=>	{

								let	server,	teardown	=	(error)	=>	{

												server.close(()	=>

																mongoose.disconnect(()	=>	done(error)));

								};

								server	=	require('http')

												.createServer(require('./src/app.js')(mongoose))

												.listen(TEST_PORT,	function()	{

																gulp.src('integration-test/**/*.js')

																				.pipe(

																								...

)

																				.on('error',	teardown)

																				.on('end',	teardown)

												});

				});

});

We	can	now	run	our	application	and	tests	on	a	local	development	machine	without	needing	to
have	MongoDB	running,	or	we	can	specify	the	MONGO_DB	environment	variable	if	and	when	we
want	to	use	a	real	MongoDB	instance.

Running	database	integration	tests	on	Travis	CI
We	do	want	to	regularly	integration	test	our	application	against	a	real	MongoDB	instance.
Fortunately,	Travis	CI	provides	various	data	stores	as	part	of	its	environment.	We	just	need	to	tell
it	that	our	build	requires	MongoDB	by	adding	it	to	our	travis.yml	file.	We	also	need	to	set	the
MONGODB_URL	environment	variable	for	tests	to	be	able	to	connect	to	the	database:

services:

	-	mongodb

env:

		global:

				-	MONGODB_URL=mongodb://localhost/hangman

Now	we	can	run	our	application	as	well	as	our	unit	and	integration	tests	with	a	suitable
MongoDB	instance	on	development	machines	and	on	the	CI	server.

Introducing	Redis
Redis	is	often	classified	as	a	key-value	data	store.	Redis	describes	itself	as	a	data-structure
store.	It	offers	storage	types	similar	to	the	basic	data	structures	found	in	most	programming
languages.

Why	use	Redis?
Redis	operates	entirely	in	memory,	allowing	it	to	be	very	fast.	This,	together	with	its	key-value
nature,	makes	it	well-suited	for	use	as	a	cache.	It	also	supports	publish/subscribe	channels,	which
allows	it	to	function	as	a	message	broker.	We'll	look	at	this	further	in	Chapter	10,	Real-time	Web
Apps	in	Node.js.

More	generally,	Redis	can	be	a	useful	backend	to	allow	multiple	Node.js	processes	to	co-
ordinate	with	one	another.	Node.js	scales	horizontally	and	most	websites	will	run	multiple
Node.js	processes.	Many	websites	have	"working"	data	that	doesn't	need	to	be	persisted	long
term,	but	does	need	to	be	available	quickly	and	consistently	across	all	processes.	Redis's	in-
memory	nature	and	range	of	atomic	operations	make	it	very	useful	for	this	purpose.

Redis	is	built	more	for	speed	than	durability.	There	are	various	options	to	configure	it,	but	all
expect	some	amount	of	data	loss	in	the	event	of	an	outage.	This	is	a	compromise	of	Redis	working
entirely	in-memory	for	speed.	It	is	possible	to	reduce	data	loss	to	no	more	than	the	last	second	of
writes	before	an	outage,	without	significantly	compromising	on	speed.	Redis	can	be	configured	to
completely	minimize	data	loss	by	syncing	to	disk	after	each	operation.	However,	this	has	a	more
significant	impact	on	performance	and	negates	the	advantages	of	Redis's	in-memory	nature.

Installing	Redis
Source	distributions	of	Redis	are	available	from	http://redis.io/download.

For	Windows,	it	is	more	useful	to	download	a	pre-built	binary.	It	is	available	as	a	signed	package
via	NuGet	and	Chocolatey.	If	you	have	Chocolatey	available,	you	can	install	Redis	by	running	the
following	command:

>	choco	install	redis-64

Alternatively,	you	can	download	an	unsigned	version	of	the	installer	from
https://github.com/MSOpenTech/redis/releases

Once	installed,	you	can	start	Redis	by	running	redis-server.	In	a	separate	window,	run	redis-
cli	to	connect	to	the	server	and	run	commands.

http://redis.io/download
https://github.com/MSOpenTech/redis/releases

Using	Redis	as	a	key-value	store
Everything	in	Redis	is	stored	against	a	key.	Keys	in	Redis	can	be	any	binary	data,	but	it's	best	to
think	of	them	as	strings.	Various	types	of	value	can	be	stored	against	each	key.

Redis	refers	to	simple	scalar	values	as	Strings.	Redis	also	has	special	treatment	for	scalar
integers.	The	following	example	sets	and	updates	a	key	named	counter:

127.0.0.1:6379>	set	counter	100

OK

127.0.0.1:6379>	get	counter

"100"

127.0.0.1:6379>	incr	counter

(integer)	101

This	increment	operation	is	atomic.	Redis	also	supports	setting	values	atomically.	The	following
command	will	fail	because	the	key	already	exists:

127.0.0.1:6379>	set	counter	200	nx

(nil)

These	features	can	help	coordinating	between	servers.	Redis	also	supports	setting	expiry	times
for	keys.	This	makes	it	possible	to	offer	caching	behavior	similar	to	memcache.	Redis	has	even
more	flexibility,	though,	as	we'll	see	in	the	next	section.

Storing	structured	data	in	Redis
In	addition	to	simple	key-value	pairs,	Redis	supports	other	more	structured	data	types.

Lists	are	ordered	collections	of	values.	They	are	stored	as	a	linked	list	rather	than	as	arrays.	This
makes	adding/removing	elements	at	the	ends	of	the	list	efficient	(at	the	cost	of	slower	retrieval	of
items	from	the	list	by	index),	for	example:

127.0.0.1:6379>	rpush	fruit	apple	banana	pear

(integer)	3

127.0.0.1:6379>	rpop	fruit

"pear"

127.0.0.1:6379>	lpush	fruit	orange

(integer)	3

127.0.0.1:6379>	lrange	fruit	0	-1

1)	"orange"

2)	"apple"

3)	"banana"

Note	that	lrange	takes	start	and	end	indices.	Negative	values	count	backwards	from	the	end	of
the	list,	so	-1	refers	to	the	last	element.	Being	able	to	push/pop	from	either	end	of	a	list	means
that	they	can	be	used	as	stacks	or	queues,	for	example,	for	allowing	processes	to	communicate	in
a	producer-consumer	arrangement.

Hashes	are	a	set	of	field-value	pairs.	These	are	not	as	rich	as	MongoDB	documents,	but	allow	us
to	associate	some	data	together.	For	example,	we	could	have	implemented	our	game	service	using
Redis:

127.0.0.1:6379>	hmset	game:2	word	JavaScript	setBy	user-id-7

OK

127.0.0.1:6379>	hget	game:2	word

"JavaScript"

127.0.0.1:6379>	hgetall	game:2

1)	"word"

2)	"JavaScript"

3)	"setBy"

4)	"user-id-7"

Note	that	the	top-level	key	game:2	here	is	just	a	convention.	It	can	be	useful	for	developers	to
namespace	keys	in	this	way,	but	Redis	only	understands	them	as	strings.

Sets	are	unordered	collections	of	values,	for	example:

127.0.0.1:6379>	sadd	numbers	one	two	three

(integer)	3

127.0.0.1:6379>	smembers	numbers

1)	"two"

2)	"three"

3)	"one"

Sets	support	mathematical	operations	such	as	unions	and	intersections.	They	also	support	the

retrieval	(with	optional	atomic	removal)	of	random	elements.

Sorted	sets	are	collections	of	values,	each	associated	with	a	numerical	score:

127.0.0.1:6379>	zadd	votes	3	Aye

(integer)	1

127.0.0.1:6379>	zadd	votes	4	No

(integer)	1

127.0.0.1:6379>	zadd	votes	1	Abstain

(integer)	1

127.0.0.1:6379>	zrevrange	votes	0	1

1)	"No"

2)	"Aye"

Note	that	the	ranges	are	ordered	smallest	to	largest	by	default.	We	request	a	reverse	range	above
to	get	the	element	with	the	highest	score	first.	Sorted	sets	are	useful	for	implementing	voting
systems	(as	previously	shown)	or	ranking	systems.

Building	a	user	ranking	system	with	Redis
We	want	to	be	able	to	rank	users	based	on	how	many	games	they	have	completed.	We	will	create
a	user	service,	implemented	in	Redis,	that	provides	the	following	functionality:

Record	when	a	user	successfully	completes	a	game
Return	the	top	three	users	across	the	site
Return	the	rank	of	a	given	user

We	will	first	add	a	feature	to	make	the	site	a	bit	more	user-friendly	by	allowing	users	to	choose	a
screen	name.

Using	Redis	from	Node.js
First,	we'll	need	to	install	a	Node.js	client	library	for	Redis.	We'll	also	use	the	promise	library
Bluebird	to	convert	the	Redis	client	library	to	promises:

>	npm	install	redis	--save

>	npm	install	bluebird	--save

First,	we'll	create	a	module	for	configuring	the	Redis	client	as	shown	here	in
src/config/redis.js:

'use	strict';

const	bluebird	=	require('bluebird');

const	redis	=	require('redis');

bluebird.promisifyAll(redis.RedisClient.prototype);

module.exports	=	redis.createClient(process.env.REDIS_URL);

Now	we	can	create	a	new	user	service	with	methods	for	getting	and	setting	a	username,	in
src/services/users.js:

'use	strict';

let	redisClient	=	require('../config/redis.js');

module.exports	=	{

				getUsername:	userId	=>

								redisClient.getAsync(`user:${userId}:name`),

				setUsername:	(userId,	name)	=>

								redisClient.setAsync(`user:${userId}:name`,	name)

};

Note	that	the	Redis	client	provides	functions	for	each	Redis	command	(such	as	get	and	set).
Bluebird	provides	promise-based	versions	of	each	function	suffixed	with	Async.

Of	course,	now	that	we	have	test	infrastructure	for	our	project,	we	should	add	tests	for	new	code
as	we	go	as	shown	here	test/services/users.js:

'use	strict';

const	expect	=	require('chai').expect;

const	service	=	require('../../src/services/users.js');

describe('User	service',	function()	{

				describe('getUsername',	function()	{	

								it('should	return	a	previously	set	username',	done	=>	{

												const	userId	=	'user-id-1';

												const	name	=	'User	Name';

												service.setUsername(userId,	name)

																.then(()	=>	service.getUsername(userId))

																.then(actual	=>	expect(actual).to.equal(name))

																.then(()	=>	done(),	done);

								});

								

								it('should	return	null	if	no	username	is	set',	done	=>	{

												const	userId	=	'user-id-2';

												

												service.getUsername(userId)

																.then(name	=>	expect(name).to.be.null)

																.then(()	=>	done(),	done);

								});

				});

});

Testing	with	redis-js

As	with	the	tests	for	our	games	service,	we	want	to	be	able	to	integrate	with	a	Redis	instance	on
our	CI	server.	But	we	don't	want	to	introduce	any	new	dependencies	for	development.	This	time,
we	will	make	use	of	a	library	called	redis-js	for	local	testing.	Unlike	Mockgoose,	this	does	not
use	an	in-memory	version	of	the	real	DB	engine	(Redis	is	already	in-memory).	This	is	instead	a
re-implementation	of	the	Node.js	Redis	client	that	stores	all	of	its	data	in-process:

>	npm	install	redis-js	--save-dev

Now	we	can	create	a	module	for	obtaining	the	environment-appropriate	Redis	reference	as
shown	here	src/config/redis.js:

'use	strict';

const	bluebird	=	require('bluebird');

const	debug	=	require('debug')('hangman:config:redis');

if	(process.env.REDIS_URL)	{

				let	redis	=	require('redis');

				bluebird.promisifyAll(redis.RedisClient.prototype);

				module.exports	=	redis.createClient(process.env.REDIS_URL);

}	else	{

				debug('Redis	URL	not	found.	Falling	back	to	mock	DB...');

				let	redisClient	=	require('redis-js');

				bluebird.promisifyAll(redisClient);

				module.exports	=	redisClient;

}

Note	that,	unlike	Mongoose,	the	Node.js	Redis	client	can	be	used	immediately.	Any	commands
issued	before	it	has	connected	are	actually	queued	up	internally.	This	means	we	can	just	return	the
client	from	the	module	and	require	it	directly.	There	wouldn't	be	any	benefit	in	this	case	to	the
dependency	injection	we	used	with	Mongoose.

We	also	need	to	add	Redis	to	our	.travis.yml	file	so	it	runs	on	the	CI	server:

services:

	-	mongodb

	-	redis-server

env:

		global:

				-	MONGODB_URL=mongodb://localhost/hangman

				-	REDIS_URL=redis://127.0.0.1:6379/

Finally,	we	need	to	close	the	client	once	our	tests	have	completed,	as	we	did	with	Mongoose.	We
also	ensure	we	empty	the	database	on	startup	(as	we	don't	have	a	way	of	deleting	user	data	via	the
service	interface,	as	we	do	with	games).	The	following	code	is	from	test/global.js:

'use	strict';

before(function(done)	{

				require('../src/config/redis.js').flushdbAsync().then(()	=>	done());

});

after(function(done)	{

				require('../src/config/redis.js').quit();

				require('../src/config/mongoose.js').then(

								(mongoose)	=>	mongoose.disconnect(done));

});

The	following	code	is	from	gulpfile.js:

								let	server,	teardown	=	(error)	=>	{

												require('./src/config/redis.js').quit();

												server.close(()	=>

																mongoose.disconnect(()	=>	done(error)));

								};

Implementing	user	rankings	with	Redis
Now	we	are	ready	to	add	the	user	ranking	functionality	to	our	service.	The	following	code	is
from	src/services/users.js:

module.exports	=	{

		...

		recordWin:	userId	=>

				redisClient.zincrbyAsync('user:wins',	1,	userId),

		getTopPlayers:	()	=>

				redisClient.zrevrangeAsync('user:wins',	0,	2,	'withscores')

				.then(interleaved	=>	{

						if	(interleaved.length	===	0)	{

								return	[];

						}

						let	userIds	=	interleaved

								.filter((user,	index)	=>	index	%	2	===	0)

								.map((userId)	=>	`user:${userId}:name`);

						return	redisClient.mgetAsync(userIds)

								.then(names	=>	names.map((username,	index)	=>	({

										name:	username,

										userId:	interleaved[index	*	2],

										wins:	parseInt(interleaved[index	*	2	+	1],	10)

								})));

				}),

		getRanking:	userId	=>	{

				return	Promise.all([

						redisClient.zrevrankAsync('user:wins',	userId),

						redisClient.zscoreAsync('user:wins',	userId)

]).then(out	=>	{

						if	(out[0]	===	null)	{

								return	null;

						}

						return	{	rank:	out[0]	+	1,	wins:	parseInt(out[1],	10)	};

				});

		}

};

Most	of	the	Redis	commands	used	here	will	be	familiar	from	earlier	in	the	chapter.	The	most
interesting	function	is	getTopPlayers.	This	makes	use	of	zrevrange	with	the	withscores
option.	This	returns	an	array	of	user	IDs	and	scores	(interleaved	together).	We	make	a	second
request	to	the	database	using	mget	(multivalued	get)	to	retrieve	the	names	of	all	the	users.	Once
this	returns	we	can	combine	all	the	data	for	each	user	together	into	an	object.

Making	use	of	the	users	service
Wiring	this	functionality	up	to	the	rest	of	our	application	doesn't	use	any	techniques	we	haven't
seen	before,	so	is	omitted	from	the	printed	code	listings	for	brevity.	The	full	implementation	can
be	found	in	the	companion	code	for	this	chapter,	along	with	tests	for	the	rest	of	the	user	service
methods,	at	https://github.com/NodeJsForDevelopers/chapter09.

https://github.com/NodeJsForDevelopers/chapter09

A	note	on	security
We	have	been	running	MongoDB	and	Redis	with	their	default	out-of-the-box	settings.	This	is	fine
for	development	purposes.	Deploying	these	services	into	production	requires	additional
consideration	around	security.	You	can	find	more	resources	on	this	at
https://docs.mongodb.com/manual/administration/security-checklist/	and
http://redis.io/topics/security.

https://docs.mongodb.com/manual/administration/security-checklist/
http://redis.io/topics/security

Summary
In	this	chapter,	we	have	understood	the	difference	between	different	types	of	database	and	learned
about	the	key	features	of	MongoDB	and	Redis.	We	also	persisted	our	application's	data	using
these	databases	and	used	dependency	injection	to	make	our	application	more	flexible.	We	also
learned	how	to	configure	our	development	and	integration	environments	to	use	appropriate
database	instances.

Persistence	may	be	considered	the	bottom	layer	of	our	system.	In	the	next	chapter,	we'll	introduce
real-time	client/server	communication	into	our	application.	This	frontend	functionality	means
focusing	more	on	the	top	layer	of	our	system.	However,	we'll	also	see	Redis	playing	an	important
role	in	supporting	this	functionality.

Chapter	10.	Creating	Real-time	Web	Apps
The	web	has	offered	an	ever	more	dynamic	and	interactive	user	experience.	Throughout	the	90s,
most	of	the	web	consisted	of	static	pages	or	server-side	rendered	pages.	Frames	and	iframes
made	it	possible	to	reload	parts	of	the	page	in	a	limited	way.	When	Ajax	appeared	in	the	mid-
2000s,	it	allowed	pages	to	be	much	more	engaging.	Client-side	JavaScript	could	now	request
data	from	the	server	on	demand	and	update	the	page	dynamically.

Real-time	web	applications	are	the	next	step	in	this	evolution.	These	are	applications	where	the
server	pushes	data	to	clients	without	the	clients	needing	to	initiate	a	request.	This	allows	a	user	to
be	notified	of	new	information	or	for	users	to	interact	with	each	other	in	real	time.

In	this	chapter,	we	will	cover	the	following	topics:

Establishing	a	two-way	communication	channel	between	the	client	and	server
Adding	real-time	interactivity	to	our	application
Introducing	a	backend	to	scale	our	real-time	application	across	multiple	servers

Understanding	options	for	real-time
communication
Real-time	web	applications	need	a	bidirectional	communication	channel	between	the	client	and
the	server.	This	is	any	persistent	connection	that	allows	the	server	to	push	additional	data	to	the
client	when	needed.	The	WebSockets	protocol	is	the	modern	standard	for	this	kind	of
communication	and	is	implemented	by	most	browsers.

WebSocket	connections	are	initiated	via	HTTP,	but	otherwise	do	not	depend	on	it.	The
WebSocket	protocol	defines	a	way	of	sending	messages	bi-directionally	over	a	TCP	connection.
TCP	is	the	low-level	transport	protocol	that	usually	underlies	HTTP.	WebSockets	are	still	a
relatively	new	technology	and	not	fully	supported	by	all	clients	and	servers.	Most	modern	web
browsers	today	do	support	WebSockets.	However,	intermediate	servers	(proxies,	firewalls,	and
load-balancers)	can	prevent	WebSocket	connections	from	working	(either	through	lack	of	support
or	intentionally	blocking	non-HTTP	traffic).	In	these	cases,	there	are	alternative	ways	of
achieving	real-time	communication.

The	EventSource	standard	defines	a	way	for	a	server	to	send	events	to	clients	over	HTTP	and
defines	a	JavaScript	API	for	handling	these	events.	It	is	not	as	efficient	or	widely-supported	as
WebSockets,	but	is	better	supported	by	some	older	servers	and	clients.

The	ultimate	fallback	is	long-polling.	This	is	when	the	client	initiates	an	ordinary	(Ajax)	request
to	the	server,	which	stays	open	until	the	server	has	some	data	to	send.	As	soon	as	the	client
receives	any	data,	it	makes	another	request	to	the	server	for	the	next	message.	This	introduces
additional	bandwidth	overheads	and	latency	compared	to	WebSockets,	but	has	the	widest	support
as	it	just	uses	ordinary	HTTP	requests.

Ideally,	a	client	and	server	can	negotiate	to	work	out	the	best	available	type	of	connection	to	use.
This	can	be	quite	a	complicated	process,	though.	Fortunately,	there	are	libraries	which	can	handle
this	for	us.

Introducing	Socket.IO
Socket.IO	is	a	mature	and	well-established	library	with	excellent	cross-browser	support.	It	aims
to	quickly	and	reliably	establish	a	bidirectional	communication	channel	in	a	cross-browser
compatible	way.	It	provides	a	consistent	abstraction,	based	on	idiomatic	JavaScript	events,	for
real-time	communication	between	the	client	and	the	server	over	this	channel.	If	you	have	ever
used	SignalR	in	.NET,	you	can	think	of	Socket.IO	as	the	JavaScript	equivalent.

Implementing	a	chat	room	with	Socket.IO
Let's	implement	a	chat	lobby	for	users	of	our	application	to	talk	to	one	another.	First,	we	need	to
install	Socket.IO:

>	npm	install	--save	socket.io

The	server-side	implementation	for	this	is	very	simple.	We	just	need	to	tell	Socket.IO	that,
whenever	a	user	sends	a	chat	message,	we	want	to	broadcast	this	to	all	connected	users	as	given
here	src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

				io.on('connection',	(socket)	=>	{

							socket.on('chatMessage',	(message)	=>	{

											io.emit('chatMessage',	message);

								});

				});

	};

Here,	we	add	a	listener	to	Socket.IO's	connection	event.	Our	listener	is	fired	whenever	a	new
client	connects	to	the	application.	The	socket	variable	represents	the	connection	to	that	specific
client.

The	io	parameter	shown	previously	will	be	a	Socket.IO	instance.	To	create	one	of	these,	we	need
to	provide	a	reference	to	the	HTTP	server	that	will	host	our	application,	so	that	Socket.IO	can
add	its	own	connection	handling.	To	keep	things	tidier,	we'll	add	a	new	server	module	in
src/server.js	to	set	up	our	server,	start	our	Express	application,	and	initialize	Socket.IO:

'use	strict';

module.exports	=	require('./config/mongoose').then(mongoose	=>	{

				const	app	=	require('../src/app')(mongoose);

				const	server	=	require('http').createServer(app);

				const	io	=	require('socket.io')(server);

				require('./realtime/chat')(io);

				

				server.on('close',	()	=>	{	

								require('../src/config/redis.js').quit();

								mongoose.disconnect();

				});

				return	server;

});

This	also	allows	us	to	simplify	the	bootstrap	script	and	our	integration	tests	as	in	bin/www:

#!/usr/bin/env	node

var	debug	=	require('debug')('hangman:server');

var	port	=	normalizePort(process.env.PORT	||	'3000');

require('../src/server').then((server)	=>	{

				server.listen(port);

				server.on('error',	onError);

				server.on('listening',	onListening.bind(server));

}).catch(function(error)	{

				debug(error);

				process.exit(1);

});

...

function	onListening()	{

		var	addr	=	this.address();

		...

}

...	and	in	gulpfile.js:

gulp.task('integration-test',

									['lint-integration-test',	'test'],	done	=>	{

		const	TEST_PORT	=	5000;

		

		require('./src/server.js').then((server)	=>	{

				server.listen(TEST_PORT);

				server.on('listening',	()	=>	{

						gulp.src('integration-test/**/*.js')

								.pipe(

										...

								}))

								.on('error',	error	=>	server.close(()	=>	done(error)))

								.on('end',	()	=>	server.close(done))

				});

		});

});

Now	we	need	to	add	the	client-side	code	to	communicate	with	this	service.	First,	we'll	add	a
place	for	our	chat	lobby	to	the	application	home	page	as	given	here	src/views/index.hjs:

				{{/topPlayers}}

				

				<hr/>

				<h3>Lobby</h3>

				<form	class="chat">

						<div	id="messages"></div>

						<input	id="message"/><input	type="submit"	value="Send"/>

				</form>

		</body>

</html>

Now,	we'll	create	the	client-side	script	to	connect	this	with	the	server	as	given	here
src/public/scripts/chat.js:

$(document).ready(function()	{

				'use	strict';

				var	socket	=	io();

				

				$('form.chat').submit(function(event){

								socket.emit('chatMessage',	$('#message').val());

								$('#message').val('');

								event.preventDefault();

				});

				socket.on('chatMessage',	function(message){

								$('#messages').append($('<p>').text(message));

				});

});

Finally,	we	need	to	include	our	new	script	in	the	page	and	include	the	Socket.IO	client-side	script
that	defines	the	preceding	io	function	src/view/index.hjs:

<!DOCTYPE	html>

<html>

		<head>

				<title>{{	title	}}</title>

				<link	rel="stylesheet"	href="/stylesheets/style.css"	/>

				...

				<script	src="/scripts/index.js"></script>

				<script	src="/socket.io/socket.io.js"></script>

				<script	src="/scripts/chat.js"></script>

		</head>

		<body>

				...

Note	that	we	haven't	created	the	socket.io.js	script	anywhere.	This	is	served	as	a	result	of
attaching	Socket.IO	to	our	server	in	src/server.js.	Since	we	don't	define	the	io	variable	in	our
own	script,	we	need	to	let	ESLint	know	that	it	exists	as	a	global	variable	as	given	in
gulpfile.js:

gulp.task('lint-client',	function()	{

					return	gulp.src('src/public/**/*.js')

									.pipe(eslint({	envs:	['browser',	'jquery'],

																								globals:	{	io:	false	}	}))

									.pipe(eslint.format())

									.pipe(eslint.failAfterError());

	});		

Now,	if	we	open	up	our	application	in	two	browser	windows,	they	can	send	chat	messages	to
each	other!

Scaling	real-time	Node.js	applications
Since	our	chat	messages	are	being	relayed	via	the	server,	clients	can	currently	only	communicate
with	other	clients	connected	to	the	same	server.	This	is	a	problem	if	we	want	to	scale	our
application	horizontally	across	many	servers.

This	is	easy	to	fix,	but	tricky	to	demonstrate.	To	do	so,	we	need	to	have	two	separate	instances	of
our	application	running.	This	will	be	more	realistic	and	more	useful	if	they	are	also	using	the
same	shared	databases	for	persistence.	So	we	need	to	start	up	MongoDB	and	Redis,	then	start
two	instances	of	our	application	on	different	ports	(so	that	they	don't	collide).

This	means	running	all	of	the	following	commands	(replacing	the	dbpath	of	MongoDB	as
appropriate	for	your	setup):

>	redis-server

>	mongod	--dbpath	C:\data\mongodb

>	set	MONGODB_URL=mongodb://localhost/hangman

>	set	REDIS_URL=redis://127.0.0.1:6379/

>	set	PORT=3000

>	npm	start

>	set	PORT=3001

>	npm	start

The	commands	that	start	the	database	or	application	servers	also	occupy	the	current	console.	So,
to	be	able	to	run	all	of	these	commands,	we	need	to	execute	them	in	separate	windows	or	tell
them	to	execute	in	the	background.	On	Windows,	this	can	be	achieved	with	the	following	batch
script:

@echo	off

START	/B	redis-server

START	/B	mongod	--dbpath	C:\data\mongodb

set	MONGODB_URL=mongodb://localhost/hangman

set	REDIS_URL=redis://127.0.0.1:6379/

SLEEP	2

set	PORT=3000

START	/B	npm	start

SLEEP	1

set	PORT=3001

START	/B	npm	start

Now	you	can	connect	separate	browsers	to	a	separate	application	instance	at
http://localhost:3000	and	http://localhost:3001.	Notice	that	two	clients	connected	to
the	same	application	instance	can	receive	messages	from	each	other,	but	not	from	clients	on	the
other	application	instance.

To	resolve	this,	we	need	a	shared	backend	through	which	all	the	applications	can	communicate.
Redis	is	a	perfect	candidate	for	this.

Using	Redis	as	a	backend
Socket.IO	makes	use	of	the	adapter	pattern	to	support	different	backends.	An	adapter	is	just	a
wrapper	for	converting	one	interface	into	another.	Socket.IO	has	a	standard	backend	interface	and
various	adapters	to	allow	different	implementations	to	work	with	this	interface.	By	default,	it	uses
an	in-memory	adapter	that	is	limited	to	a	single	process.	However,	the	Socket.IO	project	also
provides	an	adaptor	for	using	Redis	as	a	backend:

>	npm	install	socket.io-redis	--save

Once	installed,	using	this	is	simply	a	matter	of	telling	Socket.IO	where	to	find	our	Redis	instance
(we	skip	this	in	test	environments	where	we	only	have	one	application	process)	as	given	here
src/server.js:

'use	strict';

	

module.exports	=	require('./config/mongoose').then(mongoose	=>	{

				const	app	=	require('../src/app')(mongoose);

				const	server	=	require('http').createServer(app);

				const	io	=	require('socket.io')(server);

				if	(process.env.REDIS_URL	&&	process.env.NODE_ENV	!==	'test')	{

								const	redisAdapter	=	require('socket.io-redis');

								io.adapter(redisAdapter(process.env.REDIS_URL));

				}

				require('./realtime/chat')(io);

					

				...

				return	server;

	});

And	that's	it!	We	don't	require	any	other	changes	to	our	code	to	support	scalability.	If	you	restart
your	application	instances	now,	you	should	find	that	clients	can	communicate	between	them.

Integrating	Socket.IO	with	Express
So	far,	apart	from	sharing	the	same	server,	the	Socket.IO	and	Express	parts	of	our	application	are
completely	independent.	While	it's	good	that	they	are	loosely	coupled,	some	cross-cutting
concerns	may	be	relevant	to	both.

For	example,	both	parts	of	our	application	should	have	a	mutually	consistent	way	of	identifying
the	current	user.	This	is	especially	important	if	they	are	to	come	together	to	provide	a	single
coherent	user	experience.

First,	let's	extend	our	user	middleware	to	provide	the	current	user's	name	as	well	as	their	ID,	by
looking	them	up	in	the	user	service	as	given	here	src/middleware/users.js:

'use	strict';

module.exports	=	(service)	=>	{

				const	uuid	=	require('uuid');

				return	function(req,	res,	next)	{

								let	userId	=	req.cookies.userId;

								if	(!userId)	{

												userId	=	uuid.v4();

												res.cookie('userId',	userId);

												req.user	=	{

																id:	userId

												};

												next();

								}	else	{

												service.getUsername(userId).then(username	=>	{

																req.user	=	{

																				id:	userId,

																				name:	username

																};

																next();

												});

								}

				};

};

Tip

You	can	find	updated	tests	for	this	middleware	in	the	book's	companion	code.

This	will	mean	injecting	our	user	service	as	a	dependency,	like	we	do	for	the	other	middleware
modules	(that	is,	routes)	in	our	application	as	given	in	src/app.js:

		...

		let	gamesService	=	require('./service/games')(mongoose);

		let	usersService	=	require('./service/users');

		let	users	=	require('./middleware/users')(usersService);

		let	routes	=	require('./routes/index')(gamesService,	usersService);

		let	games	=	require('./routes/games')(gamesService,	usersService);

		let	profile	=	require('./routes/profile')(usersService);

		...

The	interesting	part	is	allowing	Socket.IO	to	make	use	of	this	middleware.	Socket.IO	has	its	own
concept	of	middleware	very	similar	to	that	of	Express.	Recall	that	Express	middleware	functions
take	parameters	for	the	current	request,	response,	and	a	next	callback.	Socket.IO	middleware
functions	just	take	a	communication	socket	and	a	next	callback.	However,	we	can	access	the
original	HTTP	handshake	that	initiated	the	socket.	This	allows	us	to	adapt	our	Express
middleware	to	Socket.IO	middleware	and	use	it	as	follows,	in	src/server.js:

'use	strict';

	

module.exports	=	require('./config/mongoose').then(mongoose	=>	{

				let	app	=	require('../src/app')(mongoose);

				let	server	=	require('http').createServer(app);

				let	io	=	require('socket.io')(server);

				if	(process.env.REDIS_URL)	{

								let	redisAdapter	=	require('socket.io-redis');

								io.adapter(redisAdapter(process.env.REDIS_URL));

				}

				io.use(adapt(require('cookie-parser')()));

				const	usersService	=	require('./services/users.js');

				io.use(adapt(require('./middleware/users')(usersService)));

				require('./realtime/chat')(io);

				

				...

				return	server;

});	

function	adapt(expressMiddleware)	{

				return	(socket,	next)	=>	{

								expressMiddleware(socket.request,	socket.request.res,	next);

				};

}

Now	the	user	middleware	will	run	for	Socket.IO	as	well	as	regular	HTTP	requests,	making	user
data	available	to	Socket.IO	as	well.	Let's	use	this	to	include	usernames	in	our	chat.	First,	we	need
to	update	our	server	as	given	in	src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

				io.on('connection',	(socket)	=>	{

								socket.on('chatMessage',	(message)	=>	{

												io.emit('chatMessage',	{

																username:	socket.request.user.name,

																message:	message

												});

								});

				});

	}

Notice	that	Socket.IO	allows	us	to	send	objects	instead	of	simple	strings	as	the	event	payload.
Now	we	just	need	to	make	use	of	this	in	the	client	as	given	here	src/public/scripts/chat.js:

$(document).ready(function()	{

				'use	strict';

				var	socket	=	io();

				...

				socket.on('chatMessage',	function(data){

								$('#messages').append(

												$('<p>').text(data.message)

																.prepend($('').text(data.username)));

});

If	you	now	open	the	application	in	separate	browser	sessions	and	specify	different	usernames,
you	will	see	these	in	the	chat	output.

Directing	Socket.IO	messages
Now	that	we	have	access	to	usernames,	we	can	also	announce	the	arrival	of	users	in	the	lobby.
We	can	do	this	by	extending	our	Socket.IO	connection	event	handler	as	given	here
src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

				io.on('connection',	(socket)	=>	{

								const	username	=	socket.request.user.name;

								if(username)	{

												socket.broadcast.emit('chatMessage',	{

																username:	username,

																message:	'has	arrived',

																type:	'action'

												});

								}

								socket.on('chatMessage',	(message)	=>	{

												io.emit('chatMessage',	{

																username:	username,

																message:	message

												});

								});

				});

	}

Here,	we	use	socket.broadcast.emit,	rather	than	io.emit,	to	send	the	event	to	all	clients
except	for	the	current	socket.	Note	that	we	also	add	extra	data	to	the	message.	This	time	we	add	a
type	field	(set	to	'action'	for	the	arrival	message)	to	allow	different	visual	presentation	of
different	types	of	message.	We	can	achieve	this	by	updating	our	client-side	code	to	set	additional
CSS	classes	based	on	the	message	type	as	given	here	src/public/scripts/chat.js:

				socket.on('chatMessage',	function(data){

								$('#messages').append(

												$('<p>').text(data.message).addClass(data.type)

																.prepend($('').text(data.username)));

				});

Tip

You	can	find	the	CSS	file	for	the	example	application	in	the	companion	code.

Let's	also	enforce	that	users	have	to	choose	a	username	before	they	can	take	part	in	the	chat	as
given	here	src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

				io.on('connection',	(socket)	=>	{

								...

								socket.on('chatMessage',	(message)	=>	{

												if	(!username)	{

																socket.emit('chatMessage',	{

																				message:	'Please	choose	a	username',

																				type:	'warning'

																});

												}	else	{

																io.emit('chatMessage',	{

																				username:	username,

																				message:	message

																});																

												}

								});

				});

	}

Here,	we	use	socket.emit	rather	than	io.emit	to	send	a	message	to	the	client	associated	with
the	current	socket.

Testing	Socket.IO	applications
Now	let's	look	at	how	we	can	test	our	chat	module.	To	talk	to	it	from	our	tests	we'll	need	a
Socket.IO	client.	The	Socket.IO	project	provides	another	package	for	this:

>	npm	install	socket.io-client	--save-dev

The	infrastructure	for	our	tests	consists	of	setting	up	a	server	and	multiple	clients	as	given	here
test/realtime/chat.js:

'use	strict';

describe('chat',	function()	{

				const	expect	=	require('chai').expect;

				let	server,	io,	url,	createUser,	createdClients	=	[];

				

				beforeEach(done	=>	{

								server	=	require('http').createServer();

								

								server.listen((err)	=>	{

												if	(err)	{

																done(err);

												}	else	{

																const	addr	=	server.address();

																url	=	'http://localhost:'	+	addr.port	+	'/chat';	

																io	=	require('socket.io')(server);

																require('../../src/realtime/chat.js')(io);

																

																done();

												}

								});

				});

				

				afterEach(done	=>	{

								createdClients.forEach(client	=>	client.disconnect());

								server.close(done);

				});

				const	createClient	=	require('socket.io-client');

				createUser	=	(name,	room)	=>	{

								let	user	=	{

												name:	name,

												client:	createClient(url)

								};

								createdClients.push(user.client);

								return	user;

				};

});

Here,	we	create	an	HTTP	server	without	specifying	an	address,	so	that	the	OS	will	assign	us	an
available	port.	We	then	use	this	this	server	to	host	our	chat	implementation.

Since	we're	running	the	chat	module	in	isolation,	we	don't	have	our	users	middleware	available,

so	will	need	an	alternative	way	to	provide	usernames.	We	can	do	this	with	a	stub	middleware	in
our	tests	that	reads	usernames	directly	from	a	header:

'use	strict';

describe('chat',	function()	{

				const	expect	=	require('chai').expect;

				let	server,	io,	url,	createUser,	createdClients	=	[];

				

				beforeEach(done	=>	{

								server	=	require('http').createServer();

								

								server.listen((err)	=>	{

												if	(err)	{

																done(err);

												}	else	{

																const	addr	=	server.address();

																url	=	'http://localhost:'	+	addr.port;

																io	=	require('socket.io')(server);

																io.use((socket,	next)	=>	{

																				socket.request.user	=	{

																								name:	socket.request.headers.username

																				};

																				next();

																});

																

																require('../../src/realtime/chat.js')(io);

																

																done();

												}

								});

				});

				

				...

				const	createClient	=	require('socket.io-client');

				createUser	=	(name,	room)	=>	{

								let	headers	=	{};

								if	(name)	{

												headers.username	=	name;

								}

																

								let	user	=	{

												name:	name,

												client:	createClient(url,	{	extraHeaders:	headers})

								};

								createdClients.push(user.client);

								user.client.emit('joinRoom',	room);

								

								return	user;

				};

});

Now	we	are	ready	to	implement	our	tests.	The	first	two,	for	messages	initiated	from	the	server,

are	quite	simple:

				it('warns	unnamed	users	to	choose	a	username',	done	=>	{

								let	unnamedUser	=	createUser();

								unnamedUser.client.emit('chatMessage',	'Hello!');

								unnamedUser.client.on('chatMessage',	(data)	=>	{

												expect(data.message).to.contain('choose	a	username');

												expect(data.username).to.be.undefined;

												expect(data.type).to.equal('warning');

												done();

								});

				});

				

				it('broadcasts	arrival	of	named	users',	done	=>	{

								let	connectedUser	=	createUser();

								let	newUser	=	createUser('User1');

								connectedUser.client.on('chatMessage',	(data)	=>	{

												expect(data.message).to.contain('arrived');

												expect(data.username).to.equal(newUser.name);

												expect(data.type).to.equal('action');

												done();

								});

				});

Testing	messages	sent	between	clients	requires	a	little	more	care	to	capture	each	client's	receipt
of	the	message:

				it('emits	messages	from	named	users	back	to	all	users',	done	=>	{

								let	namedUser	=	createUser('User1');

								let	otherUser	=	createUser();

								let	messageReceived	=	function(data)	{

												this.received	=	data;

												if	(namedUser.received	&&	otherUser.received)	{

																[namedUser.received,	otherUser.received]

																.forEach(received	=>	{

																				expect(received.message).to.equal('Hello!');

																				expect(received.username)

																								.to.equal(namedUser.name);

																});

																done();

												}

								};

								otherUser.client.on('chatMessage',

																												messageReceived.bind(otherUser));

								namedUser.client.on('chatMessage',

																												messageReceived.bind(namedUser));

								namedUser.client.emit('chatMessage',	'Hello!');

				});

Organizing	Socket.IO	applications
Now	that	we	have	a	chat	lobby	on	the	index	page	of	our	application,	it's	a	bit	odd	that	users	have
to	reload	the	page	(and	lose	the	chat	history)	to	find	out	about	new	games.	We	can	use	Socket.IO
to	update	these	as	well.

Exposing	real-time	updates	to	the	model
First,	we'll	need	our	games	service	itself	to	expose	events	for	when	games	are	added	or	removed.
Here	we	use	the	Mongoose-provided	post	method	to	hook	into	persistence	operations	on	games
as	given	here	src/services/games.js:

'use	strict';

const	EventEmitter	=	require('events');

const	emitter	=	new	EventEmitter();

module.exports	=	(mongoose)	=>	{

				let	Game	=	mongoose.models['Game'];

				if	(!Game)	{

								let	Schema	=	mongoose.Schema;

								let	gameSchema	=	new	Schema({

												word:	String,

												setBy:	String

								});

								...

								

								gameSchema.post('save',	game	=>

												emitter.emit('gameSaved',	game));

								gameSchema.post('remove',	game	=>

												emitter.emit('gameRemoved',	game));

								

								Game	=	mongoose.model('Game',	gameSchema);

				}

				

				return	{

								...

								get:	id	=>	Game.findById(id),

								events:	emitter

				};

};

module.exports.events	=	emitter;

We	expose	an	event	emitter	to	allow	other	modules	to	subscribe	to	events	for	when	games	are
added	or	removed.	Event	emitters	are	a	built-in	feature	of	Node.js,	which	provide	a	simple	way
to	expose	custom	events.	Note	that	the	Mongoose	Schema	class	is	itself	an	event	emitter,	so	we
could	just	expose	this	directly.	However,	this	would	be	leaking	details	about	the	implementation
of	our	games	service.

Tip

Again,	you	can	find	new	tests	for	these	changes	in	the	companion	code.

Organizing	Socket.IO	applications	using	namespaces
Real-time	chat	and	real-time	updates	to	the	list	of	games	are	quite	distinct	functional	areas	of	our
application.	Socket.IO	provides	namespaces	to	allow	us	to	organise	events.	This	allows	us	to
still	use	a	single	connection	between	the	client	and	the	server,	without	having	to	worry	about
clashing	event	names	between	different	functional	areas.	This	is	very	useful	as	applications
become	larger	and	more	complex.

Putting	our	chat	functionality	under	a	namespace	is	a	very	simple	change	on	the	client	and	the
server	(and	in	our	tests).

The	following	code	is	from	src/public/scripts/chat.js:

$(document).ready(function()	{

				'use	strict';

				var	socket	=	io('/chat');

				...

The	following	code	is	from	src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

					const	namespace	=	io.of('/chat');

					

					namespace.on('connection',	(socket)	=>	{

									...

									

									socket.on('chatMessage',	(message)	=>	{

													if	(!username)	{

																	...

													}	else	{

																	namespace.emit('chatMessage',	{

																					username:	username,

																					message:	message

																	});

													}

									});

					});

	};

The	following	code	is	from	test/realtime/chat.js:

																const	addr	=	server.address();

																url	=	'http://localhost:'	+	addr.port	+	'/chat';

Now	we	can	add	a	new	Socket.IO	module	for	exposing	changes	to	games.	This	simply	needs	to
forward	events	from	our	games	service	to	connected	Socket.IO	clients.

We	add	the	following	code	under	src/realtime/games.js:

'use	strict';

module.exports	=	(io,	service)	=>	{

				io.of('/games').on('connection',	(socket)	=>	{

								forwardEvent('gameSaved',	socket);

								forwardEvent('gameRemoved',	socket);

				});

				function	forwardEvent(name,	socket)	{

								service.events.on(name,	game	=>	{

												if	(game.setBy	!==	socket.request.user.id)	{

																socket.emit(name,	game.id);

												}

								});

				}

};

We	also	need	to	include	this	module	in	the	initialisation	of	our	server.

The	following	code	is	from	src/server.js:

'use	strict';

	

module.exports	=	require('./config/mongoose').then(mongoose	=>	{

				...

				require('./realtime/chat')(io);

				const	gamesService	=	require('./services/games.js')(mongoose);

				require('./realtime/games')(io,	gamesService);

				

				...

				return	server;

});

The	corresponding	client	just	needs	to	connect	to	the	/games	namespace	and	update	the	list
accordingly.

The	following	code	is	from	src/public/scripts/index.js:

				var	socket	=	io('/games');

				var	availableGames	=	$('#availableGames');

				

				socket.on('gameSaved',	function(game)	{

								availableGames.append(

												'<li	id="'	+	game	+	'">'	+

																game	+	'');

				});

				socket.on('gameRemoved',	function(game)	{

								$('#'	+	game).remove();

				});

The	following	code	is	added	to	src/views/index.hjs:

				<h3>Games	available	to	play</h3>

				<ul	id="availableGames">

						{{#availableGames}}

								<li	id="{{id}}">{{id}}

						{{/availableGames}}

				

Tip

In	practice,	it	would	better	to	use	a	client-side	MV*	library	such	as	Knockout	or	Backbone	to
update	the	page	based	on	model	changes,	rather	than	manipulating	the	DOM	like	this,	but	that's
outside	the	scope	of	this	book.

Now,	if	you	open	the	application	in	two	separate	browser	sessions	and	create	a	new	game	in	one
browser	window,	it	will	immediately	appear	in	the	other.

Partitioning	Socket.IO	clients	using	rooms
The	final	piece	of	functionality	we're	going	to	add	in	this	chapter	is	the	ability	for	users	playing
the	same	game	to	talk	to	one	another.	We	can	re-use	the	chat	functionality	we've	already	written
for	this.	However,	we	want	a	separate	chat	for	the	lobby	on	the	homepage	and	for	each	game.

Socket.IO	provides	rooms	for	directing	messages	to	different	groups	of	clients.	Remember	that
namespaces	allow	us	to	divide	our	application	into	different	functional	areas.	Rooms	allow	us	to
divide	up	clients	within	the	same	functional	area.

Rooms	in	Socket.IO	are	just	string	identifiers	and	we	add	clients	to	a	room	using	the
socket.join	function.	We'll	introduce	a	new	joinRoom	event	to	allow	our	clients	to	ask	our
server	to	add	them	to	a	particular	room.	We'll	respond	to	this	event	on	the	server	as	follows:

The	following	code	is	from	src/realtime/chat.js:

'use	strict';

module.exports	=	io	=>	{

				const	namespace	=	io.of('/chat');

				

				namespace.on('connection',	(socket)	=>	{

								const	username	=	socket.request.user.name;

								

								socket.on('joinRoom',	(room)	=>	{

												socket.join(room);

												if	(username)	{

																socket.broadcast.to(room).emit('chatMessage',	{

																				username:	username,

																				message:	'has	arrived',

																				type:	'action'

																});

												}

												

												socket.on('chatMessage',	(message)	=>	{

																if	(!username)	{

																				...

																}	else	{

																				namespace.to(room).emit('chatMessage',	{

																								username:	username,

																								message:	message

																				});

																}

												});

												

												socket.on('disconnect',	()	=>	{

																if	(username)	{

																				socket.broadcast.to(room).emit('chatMessage',	{

																								username:	username,

																								message:	'has	left',

																								type:	'action'

																				});

																}

												});

								});

				});

};

Note	that	we	also	announce	when	users	leave	a	particular	room,	in	the	same	way	that	we
announce	arrivals.	Again,	you	can	find	the	additional	test	for	this	functionality	in	the	example
code.

We'll	add	the	chat	functionality	into	the	game	page	and	specify	the	correct	room	using	a	data
attribute	on	the	chat	form.

The	following	code	is	from	src/views/game.hjs:

<!DOCTYPE	html>

<html>

		<head>

				<title>Hangman	-	Game	#{{id}}</title>

				<link	rel="stylesheet"	href="/stylesheets/style.css"	/>

				<script	

src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

				<script	src="/scripts/game.js"></script>

				<script	src="/socket.io/socket.io.js"></script>

				<script	src="/scripts/chat.js"></script>

				<base	href="/games/{{	id	}}/">

		</head>

		<body>

				<h1>Hangman	-	Game	#{{id}}</h1>

				<h2	id="word"	data-length="{{	length	}}"></h2>

				<p>Press	letter	keys	to	guess</p>

				<h3>Missed	letters:</h3>

				<p	id="missedLetters"></p>

				<hr/>

				<h3>Discussion</h3>

				<form	class="chat"	data-room="{{id}}">

						<div	id="messages"></div>

						<input	id="message"/><input	type="submit"	value="Send"/>

				</form>

		</body>

</html>

The	following	code	is	from	src/views/index.hjs:

				<hr/>

				<h3>Lobby</h3>

				<form	class="chat"	data-room="lobby">

						<div	id="messages"></div>

						<input	id="message"/><input	type="submit"	value="Send"/>

				</form>

Then	we	need	to	update	the	client	script	to	join	the	correct	room	when	connecting.

The	following	code	is	from	src/public/scripts/chat.js:

$(document).ready(function()	{

				'use	strict';

				var	chat	=	$('form.chat');

				var	socket	=	io('/chat');

				

				socket.emit('joinRoom',	chat.data('room'));	

				chat.submit(function(event){

								...

				});

				...

});

Finally,	we	need	to	make	sure	that	typing	a	chat	message	doesn't	interfere	with	playing	the	game.
We	can	do	this	by	only	treating	keypresses	as	guesses	for	the	game	when	the	user	isn't	typing	in
the	chat	message	box.

The	following	code	is	from	src/public/javascript/game.js:

				$(document).keydown(function(event)	{

								if	(!$('.chat	#message').is(':focus')	&&

																event.which	>=	65	&&	event.which	<=	90)	{

												var	letter	=	String.fromCharCode(event.which);

												if	(guessedLetters.indexOf(letter)	===	-1)	{

																guessedLetters.push(letter);

																guessLetter(letter);

												}

								}

				});

Tip

You	can	find	new	and	updated	tests	for	this	functionality	in	the	companion	code.

Putting	this	all	together,	we	can	now	have	multiple	clients	talking	to	one	another	in	separate
rooms:

Summary
In	this	chapter,	we	have	created	a	real-time	client/server	communication	channel	using	Socket.IO,
used	Redis	as	a	backend	to	scale	a	real-time	application	horizontally,	integrated	Socket.IO	with
Express	middleware,	and	organized	our	application	using	Socket.IO	namespaces	and	rooms.

As	the	network	connectivity	of	our	application	is	becoming	more	complicated,	it's	more	important
to	test	the	application	on	a	web	server	outside	of	the	development	or	CI	environment.	In	the	next
chapter,	we'll	look	at	how	to	deploy	our	application	to	the	web.

Chapter	11.	Deploying	Node.js	Applications
So	far,	we	have	only	run	our	application	in	our	local	development	environment.	In	this	chapter,
we	will	deploy	it	to	the	Web.	There	are	many	different	options	for	hosting	an	application.	We	will
work	through	one	deployment	option	to	quickly	get	an	application	up	and	running.	We	will	also
discuss	broader	principles	and	alternative	options	for	deploying	Node.js	applications.

In	this	chapter,	we	will	cover	the	following	topics:

Deploying	our	application	to	the	Web
Using	application	logs	to	diagnose	issues	on	remote	servers
Setting	up	database	servers	and	environmental	configuration
Deploying	automatically	from	Travis	CI

Tip

If	you	want	to	follow	along	with	this	chapter,	you	can	use	the	code	from
https://github.com/NodeJsForDevelopers/chapter10/	as	a	starting	point.	This	contains	the
example	code	from	the	end	of	Chapter	10,	Creating	Real-time	Web	Apps,	which	we	will	build	on
in	this	chapter.

https://github.com/NodeJsForDevelopers/chapter10/

Working	with	Heroku
Heroku	is	a	cloud-based	platform	for	web	applications.	It	aims	to	allow	developers	to	focus	on
applications	rather	than	infrastructure.	It	provides	a	low-friction	workflow	for	deploying	a	new
application	quickly,	while	also	supporting	long-term	scalability.	It	also	offers	a	marketplace	of
add-on	services,	such	as	databases	and	monitoring.

There	are	several	similar	services	to	Heroku,	some	of	which	we	will	cover	later	in	this	chapter.
Heroku	was	one	of	the	first	services	of	its	kind.	In	particular,	it	was	one	of	the	first	to	support
Node.js	as	a	first-class	citizen.	It	also	offers	many	features	for	free,	including	everything	needed
for	the	worked	example	in	this	section.

Note

Note	that	Heroku's	free	features	are	sufficient	for	deploying	an	application	for	development,
demonstration,	or	experimental	purposes.	It	would	not	be	sufficient	for	a	production	deployment
of	an	application	serving	end	users.	See	https://www.heroku.com/pricing	for	details	of	Heroku's
pricing	tiers.

https://www.heroku.com/pricing

Setting	up	a	Heroku	account	and	tooling
To	follow	the	example	in	this	section,	you	will	first	need	to	sign	up	for	Heroku	at
https://signup.heroku.com/.

We	will	also	be	using	the	heroku	toolbelt,	a	CLI	for	configuring	Heroku.	Download	and	install	the
version	for	your	platform	from	https://toolbelt.heroku.com/.

Check	that	the	heroku	toolbelt	is	installed	correctly	and	available	on	your	path.	Open	a	new
command	prompt	and	run	the	following	command:

>	heroku

You	should	see	the	help	text	with	a	list	of	available	commands.	Configure	the	toolbelt	to	use	your
Heroku	account	by	running	the	following	command:

>	heroku	login

https://signup.heroku.com/
https://toolbelt.heroku.com/

Running	an	application	locally	with	Heroku
Heroku	requires	a	small	configuration	file	(similar	to	.travis.yml)	telling	it	how	to	run	our
application.	This	is	a	file	named	Procfile,	which	in	our	case	contains	a	single	line	as	follow:

web:	npm	start

This	tells	Heroku	that	our	application	consists	of	a	single	web	process,	which	can	be	started	with
npm	start.

Note

Note,	especially	if	you	are	used	to	the	Windows	filesystem,	that	the	uppercase	P	in	the	filename	is
important.	The	application	will	be	deployed	to	a	Unix-like	system,	where	filenames	are	case-
sensitive.

To	verify	our	Procfile,	we	can	run	our	application	locally	using	Heroku:

>	heroku	local

This	will	launch	our	application	using	the	Procfile.	Note	that	it	also	sets	a	default	port	of	5000.
You	should	now	be	able	to	visit	the	application	at	http://localhost:5000.

The	heroku	local	command	also	sets	up	environment	variables	for	our	application.	These	are
read	from	a	local	.env	file	at	the	root	of	our	application:

MONGODB_URL=mongodb://localhost/hangman

REDIS_URL=redis://127.0.0.1:6379/

You	can	test	this	by	starting	up	local	instances	of	MongoDB	and	Redis.	Run	the	following
commands	in	separate	prompts	(setting	the	--dbpath	as	appropriate):

>	redis-server

>	mongod	--dbpath	C:\data\mongodb

>	heroku	local

Having	this	.env	file	means	that	we	can	use	npm	start	directly	(as	we	have	before)	to	run	with
mock	datastores	and	heroku	local	when	we	want	a	more	realistic	environment,	without	having
to	keep	track	of	our	current	environment	variables.

Deploying	an	application	to	Heroku
Now	that	we	have	created	a	Procfile,	deploying	our	application	to	the	web	is	easy.	First,	we
need	to	create	a	new	Heroku	application:

>	heroku	create

By	default,	this	provisions	a	minimal	application	on	Heroku,	with	a	randomly	assigned	name.	You
can	optionally	specify	an	application	name	as	a	third	parameter.

This	command	also	returns	the	public	URL	for	our	newly-created	app,	which	we	can	visit	now.
The	following	response	is	returned:

There's	not	much	to	see	because	we	haven't	deployed	anything	yet.	The	quickest	way	to	deploy	an
application	to	Heroku	is	via	Git.	The	heroku	create	command	also	created	a	new	Git	remote
for	us	to	push	to.	You	can	see	this	by	viewing	the	list	of	Git	remotes:

>	git	remote	-v

We	now	have	a	Git	remote	named	heroku.	Make	sure	the	new	Procfile	has	been	committed.
Now,	when	we	push	our	master	branch	to	this	remote,	it	is	automatically	built	and	deployed:

>	git	push	heroku	master

If	we	visit	the	application's	URL	again	now,	we	see	the	following:

Our	application	has	deployed	but	is	now	returning	an	error.	To	diagnose	the	problem	with	our
application,	we'll	need	to	look	at	the	logs.

Working	with	Heroku	logs,	config,	and	services
We	can	view	the	logs	from	our	application	by	running	heroku	logs.	If	you	look	through	the	logs
to	the	error	stacktrace,	you'll	see	the	following	error	message:

app[web.1]:	Error:	Cannot	find	module	'mockgoose'

The	mockgoose	package	is	unavailable	because	Heroku	builds	our	application	using	the
dependencies	in	package.json	and	not	the	devDependencies.	Recall	from	Chapter	9,
Persisting	Data,	that	this	error	is	intentional.	We	wanted	the	application	to	fail	in	live
environments	if	no	MongoDB	URL	is	configured.

To	fix	this	error,	we	need	to	set	up	a	MongoDB	instance	and	configure	our	application	to	connect
to	it.	We'll	need	to	do	the	same	for	our	Redis	DB.	Both	of	these	data	stores	are	available	as
services	from	the	Heroku	marketplace.

Setting	up	MongoDB

We	can	add	Heroku	marketplace	services	via	the	command	line.	MongoLab	is	a	third-party
service	providing	MongoDB	instances.	We	can	add	an	instance	to	our	application	as	follows:

>	heroku	addons:create	mongolab:sandbox

This	creates	a	sandbox	(free	tier)	MongoDB	instance,	suitable	for	demo	purposes.	Note	from	the
output	of	this	command	that	it	also	created	a	MONGOLAB_URI	config	variable.	Heroku	will	provide
this	to	our	application	as	an	environment	variable	at	runtime.

Our	application	is	expecting	an	environment	variable	named	MONGODB_URL.	We'll	need	to	create
this	and	set	it	to	the	same	value	as	MONGOLAB_URI.	You	can	view	and	set	config	variables	for	an
application	as	follows:

>	heroku	config

>	heroku	config:set	MONGODB_URL=mongodb://...

You	should	fill	in	the	value	of	MONGODB_URL	to	match	the	value	of	MONGOLAB_URI	returned	by	the
first	command.

Setting	up	Redis

Heroku	also	provides	a	Redis	service	via	its	marketplace.	We'll	add	it	to	our	application	as
follows:

>	heroku	addons:create	heroku-redis:hobby-dev	--as:REDIS

Again	we	use	the	free	tier	version	of	this	service	(hobby-dev)	for	demo	purposes.	It's	easy	to	re-
scale	services	to	different	tiers	later.

The	Redis	service	also	allows	you	to	specify	an	alias	for	the	created	service	instance.	Aliases

are	specified	using	the	--as	parameter	with	heroku	addons:create.	This	is	useful	for	Redis	as
we	may	have	several	Redis	instances	associated	with	a	single	application.	It's	particularly	useful
for	us,	since,	by	aliasing	our	instance	as	REDIS,	Heroku	will	create	a	REDIS_URL	environment
variable.	This	is	exactly	what	our	application	expects	to	see.

The	heroku	addons:create	command	restarts	our	application	immediately.	Our	new	database
instances	will	take	a	minute	or	two	to	become	available	though.	Wait	a	minute	before	restarting
the	application:

>	heroku	restart

We	can	now	visit	the	application	URL	in	our	browser	and	see	it	running	on	the	Web!

Deploying	from	Travis	CI
Deploying	via	Git	is	a	quick	way	to	get	up	and	running	and	is	useful	for	developers.	It's	not	a
robust	way	of	pushing	out	changes	though.	If	we	are	practicing	Continuous	Delivery	then	we	may
want	to	deploy	on	every	commit,	at	least	to	a	UAT	environment.	But	we	still	want	our	CI	server	to
act	as	a	gatekeeper	and	ensure	that	we	only	deploy	good	builds.

Travis	CI	supports	deployment	to	a	wide	range	of	hosting	providers	(as	well	as	arbitrary
deployment	via	custom	scripts).	We	can	tell	Travis	CI	to	deploy	to	Heroku	by	adding	a	deploy
section	to	our	travis.yml	as	follows	(replacing	application-name-12345	with	the	name	of
our	previously	created	Heroku	application):

services:

-	mongodb

-	redis-server

deploy:

		provider:	heroku

		app:	application-name-12345

		api_key:

env:

		global:

		-	MONGODB_URL=mongodb://localhost/hangman

		-	REDIS_URL=redis://127.0.0.1:6379/

Travis	CI	will	only	deploy	our	application	if	the	build	passes.	In	order	for	Travis	CI	to
communicate	with	Heroku,	it	requires	our	Heroku	API	key.	But	we	may	not	want	to	commit	this	to
source	control	(especially	if	our	Git	repository	is	public).	Travis	CI	allows	you	to	avoid	this	by
specifying	encrypted	environment	variables	for	the	build.

Setting	encrypted	Travis	CI	environment	variables
Environment	variables	can	be	encrypted	using	a	public	key	that	Travis	CI	associates	with	our
repository.	Travis	CI	then	uses	the	corresponding	private	key	to	decrypt	these	variables	at	build
time.

The	easiest	way	to	encrypt	environment	variables	with	the	correct	key	is	to	use	the	Travis	CLI.
This	is	available	as	a	Ruby	package.

Installing	Ruby

If	you	do	not	have	Ruby	installed	on	your	system	already,	see	https://www.ruby-
lang.org/en/documentation/installation/.	The	best	way	to	install	on	Windows	is	to	use
RubyInstaller,	from	http://rubyinstaller.org/.

You	can	check	whether	Ruby	is	installed	and	configured	on	your	path	by	running	the	following
command:

>	ruby	-ver

You	should	have	version	2.0.0	or	higher.

Creating	an	encrypted	environment	variable

Once	you	have	Ruby	installed	and	on	your	path,	you	can	install	the	Travis	CLI	as	follows:

>	gem	install	travis	--no-rdoc	--no-ri

Note

Gem	is	the	Ruby	package	manager,	similar	to	npm.	The	--no-doc	and	--no-ri	arguments	here
skip	installation	of	low-level	API	docs,	which	we	don't	need.

Now	we	can	add	our	encrypted	environment	variable.	First	we	need	to	obtain	the	Heroku	API	key
for	our	application:

>	heroku	auth:token

Now	we	can	add	this	to	our	.travis.yml	file	as	follows:

>	travis	encrypt	[AUTH_TOKEN]	--add	deploy.api_key

[AUTH_TOKEN]	is	the	output	from	the	previous	command.

This	encrypts	the	API	key	and	automatically	adds	the	encrypted	version	into	our	.travis.yml
file.	Before	committing,	try	updating	something	in	the	application,	for	example	the	page	title	from
src/routes/index.js:

...

https://www.ruby-lang.org/en/documentation/installation/
http://rubyinstaller.org/

												.then(results	=>	{

																res.render('index',	{

																												title:	'Hangman	online',

																												userId:	req.user.id,

																												createdGames:	results[0],

...

Now	commit	and	push	the	master	branch	(to	origin,	not	directly	to	heroku)	and	wait	for	the
Travis	CI	build	to	complete.	The	build	output	shows	our	application	being	deployed:

If	you	visit	the	application	again,	you	should	see	the	new	version	with	the	updated	title.

Recall	that	Travis	CI	is	actually	building	our	application	for	multiple	versions	of	Node.js.	By
default,	Travis	CI	deploys	our	application	at	the	end	of	each	build	job.	This	is	unnecessary	and
slows	down	our	overall	build.	We	can	tell	Travis	CI	to	deploy	only	from	a	specific	build	job	by
altering	our	.travis.yml	file	as	follows:

deploy:

		provider:	heroku

		app:	afternoon-cliffs-85674

		on:

				node:	6

		api_key:

				secure:	...

If	we	commit	and	check	the	output	from	Travis	CI	again,	we	can	see	that	only	the	Node.js	v6	build
job	performs	a	deployment.

Further	resources
For	further	considerations	on	deploying	web	apps,	see	The	Twelve-Factor	App
(http://12factor.net/).	This	is	a	detailed	resource	about	important	considerations	for	running
enterprise-grade	web	applications	on	services	such	as	Heroku.

There	are,	of	course,	a	great	many	options	for	hosting	a	web	application.	Azure's	web	app	service
and	AWS's	Elastic	Beanstalk	both	support	Node.js	as	a	first-class	citizen.	Modulus
(https://modulus.io/)	provides	Node.js	and	Mongo	DB	hosting,	with	powerful	scaling,
monitoring,	and	load-balancing	features.

The	preceding	are	all	examples	of	application	hosting	platforms	(Platform-as-a-Service	(PaaS),
in	cloud	terminology).	You	can,	of	course,	also	deploy	Node.js	applications	to	bare	infrastructure
(either	cloud	infrastructure	or	your	own	machines).	For	a	detailed	guide,	see
https://certsimple.com/blog/deploy-node-on-linux.

You	may	need	to	manage	releases	of	your	application	through	multiple	environments.	Your	CI
server	might	first	deploy	your	application	to	an	integration	environment	and	run	tests	on	it	there
before	deploying	to	UAT.	You	may	then	want	to	be	able	to	push	the	exact	same	release	from	UAT
to	Stage	and	Live	environments	at	the	click	of	a	button.

Heroku	Pipelines	and	Azure	Web	App	deployment	slots	allow	you	to	manage	the	release	of	your
application	through	different	environments.	Wercker	(http://wercker.com/)	is	a	build	and
deployment	service	that	can	automate	more	complex	workflows.	It	also	provides	isolated
environments	based	on	Docker	containers.

http://12factor.net/
https://modulus.io/
https://certsimple.com/blog/deploy-node-on-linux
http://wercker.com/

Summary
In	this	chapter,	we	have	deployed	an	application	to	the	web	using	Heroku,	configured
environment	settings	and	provisioned	databases,	set	up	Travis	CI	to	automatically	deploy
successful	builds,	and	learned	about	further	options	and	considerations	for	deploying	Node.js
applications.

Now	that	our	application	is	available	online,	we	can	start	thinking	about	how	to	integrate	it	with
the	wider	Web.	In	the	next	chapter,	we'll	look	at	allowing	users	to	log	in	using	third	party	social
media	services	as	an	identity	provider.

Chapter	12.	Authentication	in	Node.js
The	application	we	have	built	so	far	allows	users	to	choose	a	username	to	identify	themselves.
However,	they	only	retain	this	identity	for	the	duration	of	their	browser	session.	It's	important	to
allow	users	to	retain	a	consistent	identity	from	one	session	to	the	next.	This	allows	us	to	build
richer	user	experiences.	Some	websites	(such	as	Facebook)	couldn't	offer	their	main	functionality
at	all	without	being	able	to	identify	users.

Identifying	users	requires	us	to	implement	authentication.	In	this	chapter,	we	will	cover	the
following	topics:

Implementing	third-party	authentication	via	social	networking	sites
Associating	third-party	identities	with	our	own	user	data
Simulating	user	authentication	to	support	integration	testing

Introducing	Passport
Passport	is	an	authentication	framework	for	Node.js.	It	can	act	as	Express	middleware,	making	it
easy	to	integrate	with	our	application.

Like	some	of	the	other	libraries	we've	discussed	so	far,	Passport	is	very	modular.	Its	core
package	provides	a	common	paradigm	for	authentication.	Passport's	middleware	performs
authentication	and	augments	the	request	object	with	a	user	property.

Additional	Passport	npm	packages	support	hundreds	of	different	strategies	for	authentication.
Each	Passport	strategy	provides	a	different	mechanism	for	identifying	users.	We'll	look	at	a	few
of	these	strategies	in	this	chapter.	Passport	makes	it	easy	to	add	new	strategies	to	suit	the	needs	of
each	application.

Choosing	an	authentication	strategy
A	common	introductory	example	is	username/password-based	authentication.	This	uses	a	login
form	to	verify	users'	credentials	against	the	application's	database.	Although	this	is	one	of	the
simplest	authentication	mechanisms	to	understand,	it's	not	the	most	useful.	Forcing	users	to	create
an	account	for	our	site	is	an	extra	hurdle	to	them	using	it.	Users	also	get	tired	of	creating	an
account	and	picking	a	password	for	every	new	website.

Passport	does	support	this	kind	of	authentication,	via	the	passport-local	strategy.	We'll	make
use	of	this	strategy	for	test	purposes	later	on	in	this	chapter,	but	not	in	our	production	code.	It's
better	to	allow	users	to	authenticate	using	an	identity	already	established	elsewhere.	This	saves
users	from	having	to	pick	new	credentials	and	also	saves	our	website	from	having	to	manage
these.	This	is	just	good	separation	of	concerns.

If	you	log	in	to	StackOverflow,	you'll	notice	that	it	suggests	logging	in	using	Google+	or
Facebook.	It	also	supports	OpenID	and	other	providers.	Implementing	support	for	each	of	these
login	mechanisms	from	scratch	would	be	a	lot	of	work.	Fortunately	there	are	Passport	strategies
for	all	of	them.

Understanding	third-party	authentication
Passport	will	do	most	of	the	heavy	lifting	for	us,	but	it's	still	worth	having	a	basic	understanding
of	how	third-party	authentication	works.	When	a	client	wants	to	log	into	a	website,	it	sends	them
to	a	third-party	provider.	The	third-party	provider	gives	the	client	back	a	token	they	can	use	to
authenticate	with	the	website.	When	the	client	is	a	web	browser,	this	process	can	be	made	almost
invisible	to	the	user,	via	automatic	redirects.

The	website	must	then	verify	that	the	token	presented	to	it	by	the	client	really	came	from	the	third-
party	provider.	The	website	and	the	third-party	provider	might	have	established	a	pre-shared	key
for	this	purpose,	which	could	be	used	to	create	a	cryptographically	verifiable	token.
Alternatively,	the	website	might	call	the	third-party	provider	directly	to	verify	the	token.	In
practice,	a	website	will	often	want	to	call	a	third-party	provider	anyway	to	gain	more	information
associated	with	the	user's	identity,	for	example,	their	username	or	other	profile	information.

Using	Express	sessions
Many	of	Passport's	strategies	are	based	on	HTTP	sessions.	At	the	moment,	our	application	is	just
using	simple	cookies	to	store	user	IDs.	To	use	Passport	for	third-party	authentication,	we'll	need
to	add	session	support	into	our	application.	Express	provides	session	support	in	the	express-
session	module.	First,	we	add	this	to	our	application:

>	npm	install	express-session	--save

We	also	need	somewhere	to	store	session	data.	Express	supports	a	variety	of	session	stores	via
additional	modules.	Redis	is	well	suited	to	this	task	and	we	already	have	a	Redis	instance
available.	We	can	use	the	connect-redis	module	to	store	sessions	in	Redis:

>	npm	install	connect-redis	--save

We	can	now	create	a	new	configuration	module	to	keep	all	our	session	logic	in	one	place.	Since
this	will	return	middleware,	we'll	put	it	in	the	middleware	folder	here
src/middleware/sessions.js:

'use	strict';

const	session	=	require('express-session');

let	config	=	{

				secret:	process.env.SESSION_SECRET,

				saveUninitialized:	false,

				resave:	false

};

if	(process.env.REDIS_URL	&&	process.env.NODE_ENV	!==	'test')	{

				const	RedisStore	=	require('connect-redis')(session);

				config.store	=	new	RedisStore({	url:	process.env.REDIS_URL	});

}

module.exports	=	session(config);

We	configure	the	Express	session	module	as	follows:

Use	the	value	of	an	environment	variable	as	the	session	secret
Only	save	sessions	that	contain	some	data
Do	not	resave	sessions	unless	they	have	changed
If	Redis	is	available,	use	it	as	the	session	store

Let's	consider	each	of	the	configuration	properties	in	turn.

Specifying	a	session	secret
Express	uses	a	session	secret	to	protect	session	data	from	being	tampering	with.	You	should
specify	this	by	setting	the	SESSION_SECRET	environment	variable	locally.	The	value	is	arbitrary
and	can	be	anything,	as	long	as	it's	not	empty.	We	also	need	to	specify	this	in	our	integration	test
so	it	can	run	on	the	CI	server.	The	following	code	is	from	gulpfile.js:

gulp.task('integration-test',	...,	(done)	=>	{

				const	TEST_PORT	=	5000;

				process.env.SESSION_SECRET	=

								process.env.SESSION_SECRET	||	'testOnly';

				require('./src/server.js').then((server)	=>	{

								...

				});

});	

Deciding	when	the	session	gets	saved
Avoiding	unnecessary	saves	is	a	minor	optimization	and	can	avoid	certain	race	conditions.	Only
saving	initialized	sessions	allows	you	to	request	user	consent	before	storing	any	cookies.	This
might	be	necessary	for	compliance	with	regional	laws,	most	notably	in	the	EU.	See
https://www.cookiechoices.org/	for	more	information.

https://www.cookiechoices.org/

Using	alternative	session	stores
By	default,	Express	will	use	an	in-memory	session	store.	This	is	fine	for	development	purposes
and	in	test	environments	where	we	only	have	one	application	process,	but	is	not	suitable	for
production	use.	Storing	sessions	out	of	process	in	Redis	is	important	if	we	want	to	scale	across
multiple	instances.	We	configure	the	Redis	store	with	our	existing	Redis	URL.

Note

In	practice,	you	might	want	to	use	different	Redis	instances	for	session	data	and	other	application
data.	These	are	quite	different	use	cases,	so	they	might	benefit	from	a	different	configuration	of
Redis.	For	example,	session	data	is	likely	to	be	higher	load,	but	can	afford	to	be	more	volatile.
For	small-scale	applications	such	as	our	example	application	in	this	book,	a	single	Redis	instance
will	suffice.

Using	session	middleware
We	can	now	use	sessions	elsewhere	in	our	application	instead	of	directly	setting	cookies.	The
following	code	is	from	src/app.js:

				let	sessions	=	require('./middleware/sessions');

				...

				app.use(bodyParser.urlencoded({	extended:	false	}));

				app.use(sessions);

				app.use(express.static(path.join(__dirname,	'public')));

				...

The	following	code	is	from	src/middleware/users.js:

'use	strict';

module.exports	=	(service)	=>	{

				const	uuid	=	require('uuid');

				return	function(req,	res,	next)	{

								let	userId	=	req.session.userId;

								if	(!userId)	{

												userId	=	uuid.v4();

												req.session.userId	=	userId;

												req.user	=	{

																id:	userId

												};

												next();

								}	else	{

												...

								}

				};

};

The	following	code	is	from	src/server.js:

'use	strict';

module.exports	=	require('./config/mongoose').then(mongoose	=>	{

				...

				io.use(adapt(require('./middleware/sessions')));

				const	usersService	=	require('./services/users.js');

				...

});

Implementing	social	login
For	our	first	example,	we'll	use	Twitter	as	our	third-party	authentication	provider.	If	you	want	to
follow	along	with	the	example	you	will	need	a	Twitter	account,	which	is	very	quick	to	set	up.

Setting	up	a	Twitter	application
In	order	for	Twitter	to	recognize	our	application,	we	need	to	create	a	new	app	in	Twitter's
developer	portal:

1.	 Visit	https://apps.twitter.com/	and	click	on	Create	New	App.
2.	 Fill	in	the	Name,	Description,	Website,	and	Callback	URL	fields:

If	you've	deployed	your	application	to	Heroku,	you	can	use	its	Heroku	URL	here
Otherwise,	just	fill	in	placeholder	values	for	both	fields	(for	example,
http://test.example.com/callback)

3.	 Click	on	Create	your	Twitter	application.
4.	 Click	on	the	Settings	tab	and	ensure	that	Enable	Callback	Locking	is	unchecked	(leaving

this	unchecked	allows	you	to	use	placeholder	values	for	the	URLs	and	is	also	useful	for
local	testing).

5.	 Click	on	the	Keys	and	Access	Tokens	tab	to	view	your	application's	Consumer	Key	(API
Key)	and	Consumer	Secret	(API	Secret).

Set	new	local	environment	variables	named	TWITTER_API_KEY	and	TWITTER_API_SECRET,
containing	the	corresponding	values	from	Twitter.	You	might	want	to	create	a	shell	script	or	batch
file	to	set	these	in	the	console	or	configure	them	as	Heroku	environment	variables	(see	Chapter
11,	Deploying	Node.js	Applications)

https://apps.twitter.com/

Configuring	Passport
We'll	now	make	use	of	Passport	to	allow	users	to	log	into	our	site	via	Twitter.	First,	we	need	to
install	the	relevant	npm	packages:

>	npm	install	passport	--save

>	npm	install	passport-twitter	--save

Now	we	can	configure	Passport	to	authenticate	with	Twitter.	We	add	the	following	code	under
src/config/passport.js:

'use	strict';

const	passport	=	require('passport');

const	TwitterStrategy	=	require('passport-twitter').Strategy;

module.exports	=	(usersService)	=>	{

				if(process.env.TWITTER_API_KEY	&&

												process.env.TWITTER_API_SECRET)	{

								passport.use(new	TwitterStrategy({

												consumerKey:	process.env.TWITTER_API_KEY,

												consumerSecret:	process.env.TWITTER_API_SECRET,

												callbackURL:	'/auth/twitter/callback',

												passReqToCallback:	true

								},	(req,	token,	tokenSecret,	profile,	done)	=>	{

												usersService.setUsername(req.user.id,

																				profile.username	||	profile.displayName)

																.then(()	=>	{	done();	},	done);

								}));

				}

				return	passport;

};

This	uses	the	TwitterStrategy	for	authentication	with	Twitter,	passing	in	our	API	key	and
secret	on	a	configuration	object.	The	second	constructor	parameter	is	a	function	that	Passport	will
invoke	after	authenticating	with	Twitter	(referred	to	as	the	verify	callback	in	Passport's
documentation).	Here	we	set	the	current	user's	name	based	on	the	profile.username	or
profile.displayName	provided	from	Twitter	by	Passport.

Note

The	profile	object	contains	the	user	profile	returned	by	the	authentication	provider.	Passport
standardizes	profile	data	to	make	it	easier	to	work	with	multiple	strategies.	There's	a	standard	set
of	fields,	such	as	displayName,	which	all	Passport	strategies	will	populate	if	possible.	We'd
prefer	to	use	the	Twitter	username	(for	example,	hgcummings)	than	the	display	name	(for
example,	Harry	Cummings).	The	profile.username	field	contains	the	Twitter	username.	This	is
not	one	of	the	standard	fields,	but	many	strategies	will	return	a	field	with	this	name.	So	we	use
profile.username	first,	but	fall	back	to	the	more	standard	profile.displayName.

Now	we	just	need	to	make	use	of	our	new	passport	module	in	Express.	The	following	code	is

from	src/app.js:

				let	passport	=	require('./config/passport')(usersService);

				...	

				

				app.use(users);

				app.use(passport.initialize());

app.post('/auth/twitter',	passport.authenticate('twitter'));

app.get('/auth/twitter/callback',

								passport.authenticate('twitter',

												{	successRedirect:	'/',	failureRedirect:	'/'	}));

				app.use('/',	routes);

				...

This	tells	our	application	to	do	three	things:

Use	Passport's	Express	middleware
Authenticate	users	via	Twitter	when	they	POST	to	/auth/twitter
Handle	Twitter	authentication	results	at	/auth/twitter/callback	before	redirecting	users
to	the	homepage

Finally,	we	need	to	provide	a	login	button	to	reach	our	new	endpoint	as	shown	here	in
src/views/index.js:

				<h1>{{	title	}}</h1>

				<h2>Account</h2>

				{{#ranking}}

						...

				{{/ranking}}

				<form	action="/auth/twitter"	method="POST">

								<input	type="submit"	value="Log	in	using	Twitter"	/>

				</form>

				<h3>Profile</h3>

				<form	action="/profile"	method="POST">

						...

				</form>

				...

If	you	run	the	application	and	click	Log	in	using	Twitter,	the	following	will	happen:

The	application	will	redirect	your	browser	to	Twitter
Twitter	will	prompt	you	to	log	in	if	you	have	not	already
Twitter	will	ask	whether	you're	happy	with	the	application	seeing	your	profile	details	and
other	public	data
Twitter	will	then	redirect	your	browser	to	the	/auth/twitter/callback	endpoint
Your	browser	will	make	a	request	to	this	endpoint	with	your	authentication	token	from
Twitter
Passport	will	validate	this	token	then	invoke	our	login	handler	function
When	our	function	completes,	Passport	will	return	a	redirect	response	to	the	homepage

We	have	now	integrated	Twitter	authentication	with	our	application!	However,	we're	not	really

using	it	to	allow	users	to	log	in.	We're	just	associating	a	Twitter	username	with	our	existing	user
IDs	created	for	each	session.	You	can	see	this	by	opening	up	two	separate	browser	sessions.	Try
logging	in	with	each	of	them.	If	you	create	a	new	game	in	one	browser,	it	appears	in	the	other
browser	in	the	list	of	games	created	by	other	users.	This	is	because	you	now	have	two	user	IDs
associated	with	the	same	Twitter	username.

We	need	to	recognize	the	same	user	whenever	they	log	in	with	the	same	Twitter	account.	This
should	not	depend	on	being	in	the	same	browser	session.	To	address	this,	we'll	need	to	do	the
following:

Persist	user	accounts	to	our	database
Tell	Passport	how	to	store	and	retrieve	users
Let	Passport	associate	a	user	with	the	current	session

Persisting	user	data	with	Redis
We	already	use	Redis	to	associate	usernames	with	user	IDs.	Now	we	want	to	be	able	to	associate
user	IDs	with	Twitter	accounts	as	well.	The	first	time	a	user	logs	in	with	an	external	provider,	we
want	to	create	a	new	user	with	the	name	taken	from	the	external	profile.	Subsequent	requests
authenticated	with	the	same	provider	will	see	the	same	user.

We	can	implement	this	functionality	using	Redis's	SETNX	operation.	This	will	only	set	a	key	if	it
does	not	already	exist	and	return	whether	this	was	the	case.	Our	implementation	is	as	follows
from	src/services/users.js:

'use	strict';

const	redisClient	=	require('../config/redis.js');

const	uuid	=	require('uuid');

const	getUser	=	userId	=>

		redisClient.getAsync(`user:${userId}:name`)

				.then(userName	=>	({

						id:	userId,

						name:	userName

				}));

const	setUsername	=	(userId,	name)	=>

		redisClient.setAsync(`user:${userId}:name`,	name);

module.exports	=	{

		getOrCreate:	(provider,	providerId,	providerUsername)	=>	{

				let	providerKey	=	`provider:${provider}:${providerId}:user`;

				let	newUserId	=	uuid.v4();

				return	redisClient.setnxAsync(providerKey,	newUserId)

						.then(created	=>	{

								if	(created)	{

										return	setUsername(newUserId,	providerUsername)

												.then(()	=>	getUser(newUserId));

								}	else	{

										return	redisClient

												.getAsync(providerKey).then(getUser);

								}

						});

		},

		getUser:	getUser,				getUsername:	userId	=>	

redisClient.getAsync(`user:${userId}:name`),

		setUsername:	setUsername,

		...

};

Here,	we	create	a	new	user	ID	and	tell	Redis	to	associate	it	with	the	external	provider	(for
example,	Twitter)	account.	If	we	have	seen	the	external	account	before,	we	return	the	user	that
was	already	associated	with	it.	Otherwise,	we	persist	a	new	user	ID	and	associate	it	with	the
username	from	the	external	profile.	Tests	for	this	functionality	can	be	found	in	the	companion
code.

Configuring	Passport	with	persistence
Now	that	we	have	a	way	of	persisting	users,	we	need	to	tell	Passport	how	to	make	use	of	this.
First,	we	update	our	verify	callback	to	make	use	of	our	new	getOrCreate	function	rather	than
just	setting	a	username.	Then	we	need	to	tell	Passport	how	to	identify	and	retrieve	users
associated	with	a	session	by	serializing	users	to	and	from	a	string.	The	following	code	is	from
src/config/passport.js:

'use	strict';	

const	passport	=	require('passport');

const	TwitterStrategy	=	require('passport-twitter').Strategy;

module.exports	=	(usersService)	=>	{

				if(process.env.TWITTER_API_KEY	&&

												process.env.TWITTER_API_SECRET)	{

								passport.use(new	TwitterStrategy({

												consumerKey:	process.env.TWITTER_API_KEY,

												consumerSecret:	process.env.TWITTER_API_SECRET,

												callbackURL:	'/auth/twitter/callback',

												passReqToCallback:	true

								},	(req,	token,	tokenSecret,	profile,	done)	=>	{

												usersService.getOrCreate('twitter',	profile.id,

																				profile.username	||	profile.displayName)

																.then(user	=>	done(null,	user),	done);

								}));

				}

				passport.serializeUser((user,	done)	=>	{

								done(null,	user.id);

				});

				passport.deserializeUser((id,	done)	=>	{

								usersService.getUser(id)

												.then(user	=>	done(null,	user))

												.catch(done);

				});

				return	passport;

};

Passport	stores	the	string	version	of	the	user	(returned	by	our	serializeUser	callback)	on	the
session.	It	uses	our	deserializeUser	callback	to	turn	this	string	into	a	user	object	which	it	adds
to	the	request.	In	our	case,	the	string	representation	of	the	user	is	just	their	ID	and	deserialization
is	just	a	lookup	in	the	users	service.

In	order	for	this	to	work,	we	also	need	to	tell	our	application	to	use	Passport's	own	session
middleware,	which	works	together	with	Express	sessions.	To	avoid	repetition,	we'll	specify	all
of	our	session-related	middleware	in	our	session	middleware	module.	The	following	is	the	code
from	src/middleware/sessions.js:

...

const	expressSession	=	session(config);

module.exports	=	passport	=>	[

				expressSession,	passport.initialize(),	passport.session()

];

This	module	now	returns	three	middleware	instances.	We	want	to	use	this	with	both	Express	and
Socket.IO.	The	first	of	these	is	simple,	since	we	can	pass	multiple	middleware	objects	to	the
Express	app.use	function	as	here	src/app.js:

				...

				let	passport	=	require('./config/passport')(usersService);

				let	sessions	=	require('./middleware/sessions')(passport);

				...

				app.use(bodyParser.json());

				app.use(bodyParser.urlencoded({	extended:	false	}));

				app.use(sessions);

				app.use(express.static(path.join(__dirname,	'public')));

				app.post('/auth/twitter',	passport.authenticate('twitter'));

				...

For	Socket.IO,	we	need	to	adapt	each	middleware	in	turn	as	here	src/server.js:

				...

				const	usersService	=	require('./services/users.js');

				let	passport	=	require('./config/passport');

				require('./middleware/sessions')(passport).forEach(

								middleware	=>	io.use(adapt(middleware)));

				

				require('./realtime/chat')(io);

				...

Note	that,	in	both	cases,	our	users	middleware	is	no	longer	needed	and	can	now	be	deleted.
However,	this	middleware	previously	ensured	that	there	was	always	a	user	object	on	the	request.
This	will	now	only	be	the	case	when	there	is	a	logged	in	user,	so	we	need	to	update	the	rest	of	our
application	accordingly.

There	are	a	few	places	in	our	application	that	assume	there	will	always	be	a	user	on	the	request.
Since	this	is	no	longer	guaranteed,	there	are	two	ways	to	resolve	this:	we	can	update	our	code	to
cope	with	no	user	being	present	on	the	request	or	we	can	hide	functionality	from	unauthenticated
users.

We	still	want	unauthenticated	users	to	be	able	to	view	public	chat	and	to	see	and	play	games,	so
we	update	this	functionality	accordingly.	The	code	from	src/realtime/chat.js	is	updated	as
follows:

				namespace.on('connection',	(socket)	=>	{

								let	username	=	null;

								if	(socket.request.user)	{

												username	=	socket.request.user.name;

								}

								...

The	following	code	is	from	src/realtime/games.js:

				function	forwardEvent(name,	socket)	{

								service.events.on(name,	game	=>	{

												if	(!socket.request.user	||

																				game.setBy	!==	socket.request.user.id)	{

																socket.emit(name,	game.id);

												}

								});

				}

The	following	code	is	from	src/routes/games.js:

				router.post('/:id/guesses',	function(req,	res,	next)	{

								checkGameExists(

												req.params.id,

												res,

												game	=>	{

																if	(req.user	&&	game.matches(req.body.word))	{

																				userService.recordWin(req.user.id);

																}

																...

												},

												next

);

				});

Hiding	functionality	from	unauthenticated	users
We	certainly	want	unauthenticated	users	to	be	able	to	visit	the	home	page	of	our	application,	but
might	not	want	to	display	all	of	the	application's	functionality	to	them.	To	achieve	this,	we'll
update	our	index	route	as	follows	from	src/routes/index.js:

				router.get('/',	function(req,	res,	next)	{

								let	userId	=	null;

								if	(req.user)	{

												userId	=	req.user.id;

								}

								

								Promise.all([gamesService.createdBy(userId),

																				gamesService.availableTo(userId),

																				usersService.getUsername(userId),

																				usersService.getRanking(userId),

																				usersService.getTopPlayers()])

												.then(results	=>	{

																res.render('index',	{

																												title:	'Hangman	online',

																												loggedIn:	req.isAuthenticated(),

																												createdGames:	results[0],

																												...

																								});

																				})

												.catch(next);

				});

Note	that	this	adds	a	loggedIn	property	to	the	view	data	instead	of	the	user	ID.	The	value	of	this
property	comes	from	the	isAuthenticated	function,	which	is	added	to	the	request	by	Passport.
We	use	this	to	hide	features	that	will	no	longer	work	for	unauthenticated	users	and	hide	the	login
button	from	authenticated	users.	The	following	code	is	from	src/views/index.hjs:

...

		<body>

				...

				{{^loggedIn}}

						<form	action="/auth/twitter"	method="POST">

								<input	type="submit"	value="Log	in	using	Twitter"	/>

						</form>

				{{/loggedIn}}

				{{#loggedIn}}

						<h3>Profile</h3>

						<form	action="/profile"	method="POST">				

								...

						</form>

				{{/loggedIn}}

				<h2>Games</h2>	

				{{#loggedIn}}

						<form	action="/games"	method="POST"	id="createGame">

								...

						</form>

						<h3>Games	created	by	you</h3>

						...

				{{/loggedIn}}

				<h3>Games	available	to	play</h3>

				...

				<h2>Top	players</h2>

				...

				<h3>Lobby</h3>

				<form	class="chat"	data-room="lobby">

						<div	id="messages"></dl>

						{{#loggedIn}}

								<input	id="message"/><input	type="submit"	value="Send"/>

						{{/loggedIn}}

				</form>

		</body>

</html>

Integration	testing	with	Passport
We	still	have	one	problem,	which	is	that	our	integration	tests	won't	work	anymore.	Only	logged-in
users	can	create	games	now.	It	would	be	a	good	idea	to	write	a	new	integration	test	to	check	that
Twitter	authentication	works.	We	don't	want	to	introduce	a	Twitter	account	dependency	to	our
current	test	though.

Instead,	we'll	make	use	of	the	passport-local	strategy	to	allow	our	test	to	log	in.	We'll	install	this
as	a	dev	dependency	so	it	can't	accidentally	run	in	production:

>	npm	install	passport-local	--save-dev

We	configure	Passport	to	accept	any	username	and	password.	If	using	passport-local	for	real,	this
is	where	you	would	check	against	credentials	in	your	data	store.	The	following	code	is	from
src/config/passport.js:

if	(process.env.NODE_ENV	===	'test')	{

				const	LocalStrategy	=	require('passport-local');

				const	uuid	=	require('uuid');

				passport.use(new	LocalStrategy((username,	password,	done)	=>	{

												const	userId	=	uuid.v4();

												usersService.setUsername(userId,	username)

																.then(()	=>	{

																				done(null,	{	id:	userId,	name:	username	});

																});

								}

));

}

Then	we	add	a	new	local	authentication	endpoint	to	our	application	as	here	src/app.js:

		if	(process.env.NODE_ENV	===	'test')	{

				app.post('/auth/test',

						passport.authenticate('local',	{	successRedirect:	'/'	}));

		}

And	finally	update	our	test	to	login	as	a	first	step	as	code	from	integration-test/game.js
shown	follows:

				function	withGame(word,	callback)	{								

								page.open(rootUrl	+	'/auth/test',

												'POST',

												'username=TestUser&password=dummy',

												function()	{

																	...

												}

);

				}

Allowing	users	to	log	out
Users	will	also	expect	us	to	provide	a	way	to	log	out	of	our	application.	Passport	makes	this	easy
by	adding	a	logout	function	to	the	request.	We	just	need	to	make	use	of	this	in	one	of	our	routes
here	src/routes/index.js:

				router.post('/logout',	function(req,	res){

								req.logout();

								res.redirect('/');

				});

We	can	add	a	log	out	button	to	our	view	to	make	use	of	this	new	route	as	in
src/views/index.hjs:

				{{#loggedIn}}

						<form	action="/logout"	method="POST">

								<input	type="submit"	value="Log	out"	/>

						</form>

						<h3>Profile</h3>

Adding	other	login	providers
Now	that	we	have	all	the	general	infrastructure	for	authentication,	adding	additional	providers	is
easy.	Let's	add	Facebook	authentication	as	an	example.	First,	we	need	to	install	the	relevant
Passport	strategy:

>	npm	install	passport-facebook	--save

Then	we	can	update	our	Passport	config	file	from	src/config/passport.js	as	follows:

...

const	FacebookStrategy	=	require('passport-facebook').Strategy;

module.exports	=	(usersService)	=>	{

				const	providerCallback	=	providerName	=>

								function(req,	token,	tokenSecret,	profile,	done)	{

												usersService.getOrCreate(providerName,	profile.id,

																				profile.username	||	profile.displayName)

																.then(user	=>	done(null,	user),	done);

								};

				if(process.env.TWITTER_API_KEY	&&

												process.env.TWITTER_API_SECRET)	{

								passport.use(new	TwitterStrategy({

												consumerKey:	process.env.TWITTER_API_KEY,

												consumerSecret:	process.env.TWITTER_API_SECRET,

												callbackURL:	'/auth/twitter/callback',

												passReqToCallback:	true

								},	providerCallback('twitter')));

				}

				if(process.env.FACEBOOK_APP_ID	&&

												process.env.FACEBOOK_APP_SECRET)	{

								passport.use(new	FacebookStrategy({

												clientID:	process.env.FACEBOOK_APP_ID,

												clientSecret:	process.env.FACEBOOK_APP_SECRET,

												callbackURL:	'/auth/facebook/callback',

												passReqToCallback:	true

								},	providerCallback('facebook')));

				}

				...

};

Here	we've	generalized	our	verify	callback	function	to	take	different	provider	names,	then	used
this	with	both	Twitter	and	Facebook	authentication	strategies.	We	can	re-use	this	to	add	further
strategies	in	the	same	way.	We	just	need	to	set	the	relevant	environment	variables	for	them	to
work.

Note

To	obtain	a	Facebook	App	ID	and	Secret,	create	a	new	Facebook	application	at
https://developers.facebook.com/apps/	(which	requires	you	to	have	a	Facebook	account).	This	is

https://developers.facebook.com/apps/

very	similar	to	the	process	for	Twitter.	Just	create	a	new	application	of	type	Website,	with	a	URL
that	matches	your	development	environment	(for	example,	http://localhost:3000).	Once
created,	the	App	ID	and	App	Secret	will	be	visible	on	the	Dashboard	page	for	the	application.

We	also	need	to	add	Facebook	authentication	routes	to	our	application	config	file.	These	are	just
the	same	as	the	corresponding	Twitter	routes.	As	with	the	Passport	config	file,	we	can
commonize	by	parameterizing	the	provider	name.	The	code	from	src/app.js	is	as	follows:

		app.use(sessions);

		const	addAuthEndpoints	=	provider	=>	{

						app.post(`/auth/${provider}`,	passport.authenticate(provider));

						app.get(`/auth/${provider}/callback`,

										passport.authenticate(provider,	{	successRedirect:	'/',

														failureRedirect:	'/',	session:	true	}));

		};

		addAuthEndpoints('twitter');

		addAuthEndpoints('facebook');

Finally,	we	need	to	add	a	button	to	allow	users	to	log	in	with	Facebook.	The	following	code	is
from	src/views/index.hjs:

				{{^loggedIn}}

						<form	action="/auth/twitter"	method="POST">

								<input	type="submit"	value="Log	in	using	Twitter"	/>

						</form>

						<form	action="/auth/facebook"	method="POST">

								<input	type="submit"	value="Log	in	using	Facebook"	/>

						</form>

				{{/loggedIn}}

Adding	additional	providers	is	easy.	To	add	Google+	authentication,	we	would	just	need	to
follow	these	steps:

1.	 Install	the	passport-google	npm	module
2.	 Create	a	new	application	as	described	at

https://developers.google.com/identity/protocols/OpenIDConnect
3.	 Update	the	three	files	listed	above,	passing	the	Google	provider	to	our	new	common

functions

https://developers.google.com/identity/protocols/OpenIDConnect

Summary
In	this	chapter,	we	have	added	authentication	to	our	Express	application	using	Passport,
introduced	Express	sessions	using	Redis	for	session	storage,	leveraged	multiple	Passport
strategies	to	support	different	external	providers,	and	persisted	user	data	in	Redis.

This	completes	our	example	web	application.	In	the	next	chapter	we	will	look	at	how	to	create
different	kinds	of	Node.js	project:	a	library	and	a	command-line	tool.

Chapter	13.	Creating	JavaScript	Packages
So	far	we	have	built	up	a	web	application,	making	use	of	various	npm	packages	along	the	way.
These	packages	include	libraries	such	as	Express	and	command-line	tools	such	as	Gulp.	Now
we'll	look	at	how	to	go	about	creating	packages	of	our	own.

In	this	chapter	we	will:

Explore	the	different	module	systems	available	for	JavaScript
Create	our	own	JavaScript	library
Write	JavaScript	that	can	run	on	both	the	client	and	server-side
Create	a	command-line	tool	in	JavaScript
Release	a	new	npm	package
Use	Node.js	modules	in	the	browser	environment

Note

The	code	examples	in	this	chapter	are	independent	of	everything	we've	done	so	far.

Writing	universal	modules
We	have	already	written	many	of	our	own	modules	as	part	of	our	application.	We	can	also	write
library	modules	for	use	in	other	applications.

When	writing	code	for	use	by	others,	it's	worth	considering	in	what	contexts	it	will	be	useful.
Some	libraries	are	only	useful	in	specific	environments.	For	example,	Express	is	server-specific
and	jQuery	is	browser-specific.	But	many	modules	provide	functionality	that	would	be	useful	in
any	environment,	for	example,	utility	modules	such	as	the	uuid	module	we've	used	elsewhere	in
this	book.

Let's	look	at	writing	a	module	to	work	in	multiple	environments.	We'll	need	to	support	more	than
just	Node.js-style	modules.	We'll	also	need	to	support	client-side	module	systems	such	as
RequireJS.	Recall	from	Chapter	4,	Introducing	Node.js	Modules,	that	Node.js	and	RequireJS
implement	two	different	module	standards	(CommonJS	and	Asynchronous	Module	Definition
(AMD),	respectively).	Our	package	may	also	be	used	client-side	in	a	website	with	no	module
system	in	place.

As	an	example,	let's	create	a	module	providing	a	simple	flatMap	method.	This	will	work	like
SelectMany	in	.NET's	LINQ.	It	will	take	an	array	and	a	function	that	returns	a	new	array	for	each
element.	It	will	return	a	single	array	of	the	combined	results.

As	a	Node.js/CommonJS	module,	we	could	implement	this	as	follows:

module.exports	=	function	flatMap(source,	callback)	{

				return	Array.prototype.concat.apply([],	source.map(callback));

}

Comparing	Node.js	and	RequireJS
Recall	from	Chapter	4,	Introducing	Node.js	Modules,	that	each	module	system	provides	the
following:

A	way	of	declaring	a	module	with	a	name	and	its	own	scope
A	way	of	defining	functionality	provided	by	the	module
A	way	of	importing	a	module	into	another	script

Node.js	implements	the	CommonJS	module	standard.	Module	names	correspond	to	file	paths	and
each	file	has	its	own	scope.	Modules	define	the	functionality	they	provide	using	the	exports
alias.	Modules	are	imported	using	the	require	function.

RequireJS	is	designed	for	the	browser	environment.	In	the	browser	there	is	no	new	scope	per	file
(all	script	files	execute	in	the	same	scope	and	can	see	the	same	variables).	Also,	modules	must	be
loaded	by	network	requests	rather	than	from	the	local	filesystem.

RequireJS	implements	the	AMD	standard.	AMD	specifies	two	functions,	which	RequireJS	adds
to	the	top-level	window	object	in	the	browser	environment:

The	define	function	allows	new	modules	to	be	created	by	providing	a	name	and	a	factory
function	for	the	module.	The	scope	of	the	module	will	be	the	scope	of	its	factory	function.
The	functionality	of	the	module	is	defined	by	the	return	value	of	the	factory	function.
The	require	function	allows	modules	to	be	imported.	Although	this	has	the	same	name	as
the	module	import	function	in	Node.js,	it	works	very	differently.	Multiple	module	names	can
be	specified	for	import	(as	an	array).	The	require	function	is	asynchronous	and	takes	a
callback	to	be	executed	when	all	the	dependencies	are	loaded.	This	allows	RequireJS	to
load	modules	efficiently	in	the	browser	environment.

Supporting	the	browser	environment
For	our	module	to	work	in	the	browser	environment,	we	need	to	support	the	AMD	standard	so
RequireJS	can	work.	We	also	need	to	accommodate	sites	not	using	any	module	loader.	We	can
achieve	this	by	extending	our	module	definition	as	follows,	in	scripts/flatMap.js:

(function	(root,	factory)	{

				'use	strict';

				if	(typeof	define	===	'function'	&&	define.amd)	{

								define([],	factory);

				}	else	if	(typeof	module	===	'object'	&&	module.exports)	{

								module.exports	=	factory();

				}	else	{

								root.flatMap	=	factory();

				}

}(this,	function	()	{

				'use	strict';

				return	function	flatMap(source,	clbk)	{

								return	Array.prototype.concat.apply([],	source.map(clbk));

				}

}));

Note

Note	the	use	of	an	anonymous	function	that	is	invoked	straight	away,	called	an	Immediately-
Invoked	Function	Expression	(IIFE).	This	is	a	common	way	of	creating	an	isolated	scope	in
JavaScript	environments	without	built-in	modules.

First,	we	check	for	the	existence	of	an	AMD-style	define	function	(the	existence	of	a
define.amd	property	is	also	specified	by	the	AMD	standard).	Note	that	the	asynchronous	nature
of	the	define	function	means	that	we	need	to	use	a	factory	function	to	create	our	module.	We
provide	a	list	of	dependencies	(empty	in	this	case)	and	our	factory	function	to	the	define	function
to	create	our	module.

If	no	AMD	module	system	is	present,	we	check	for	the	CommonJS-style	module.exports	used
by	Node.js.	Finally,	if	neither	module	system	is	present,	we	provide	our	module	as	a	property	on
the	root	parameter.	Our	argument	for	this	parameter	is	the	this	keyword	evaluated	in	the	global
scope.	In	a	browser,	this	will	be	the	window	object.

Using	AMD	modules	with	RequireJS
Let's	create	a	simple	web	page	to	check	that	our	module	works	correctly	with	RequireJS.	We'll
also	show	how	to	use	RequireJS	with	an	external	library,	jQuery.

First	we	define	an	HTML	file	for	the	page:

<!DOCTYPE	html>

<html>

				<head>

								<script	data-main="scripts/main"	

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.22/require.min.js"

></script>

								<style>input,	pre	{	display:	block;	margin:	0.5em	auto;	width:	320px;	

}</style>

				</head>

				<body>

								<input	type="text"	/>

								<input	type="text"	/>

								<input	type="text"	/>

								<input	type="text"	/>

								<pre	id="wordcounts"></pre>

				</body>

</html>

Note	that	the	only	script	tag	on	the	page	is	for	RequireJS	itself.	This	script	tag	also	has	a	data
attribute	indicating	the	entry	point	of	our	application.	The	path	scripts/main	tells	RequireJS	to
load	scripts/main.js,	which	contains	the	following:

requirejs.config({

				paths:	{

								jquery:	

'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.1/jquery.min'

				}

});

require(['flatMap',	'jquery'],	function(flatMap,	$)	{

				$('input').change(function()	{

								var	allText	=	$.map($('input'),	function(input)	{

												return	$(input).val();

								}).filter(function(text)	{

												return	!!text;

								});

								var	allWords	=	flatMap(allText,	function(text)	{

												return	text.split('	');

								});

								var	counts	=	{};

								allWords.forEach(function(word)	{

												counts[word]	=	(counts[word]	||	0)	+	1;

								});

								$('#wordcounts').text(JSON.stringify(counts));

				})

});

This	script	first	configures	RequireJS.	The	only	config	property	specified	here	is	the	path
property.	The	path	for	jQuery	under	the	key	'jquery'	tells	RequireJS	how	to	resolve	the
'jquery'	dependency.	We	don't	need	to	specify	a	path	for	flatMap.js	because	we	have	saved	it
under	the	same	directory	as	main.js.

Next	we	use	the	require	function	to	load	flatMap	and	jQuery	and	pass	them	into	our	main
application	function.	In	larger	applications	using	RequireJS,	this	is	usually	a	very	short	bootstrap
function.	The	main.js	file	is	also	often	the	only	place	that	you'll	see	a	require	call.	Most	of	the
application	code	is	in	modules	declared	with	define.

As	this	is	just	a	test	of	our	library	with	RequireJS,	we'll	put	the	rest	of	our	application	code
inside	our	main	application	function.	We	use	our	flatMap	module	and	jQuery	to	calculate	and
display	word	counts	across	all	the	text	inputs.	You	can	see	this	working	by	opening	index.html
in	your	browser:

Isomorphic	JavaScript
The	flatMap.js	example	above	is	an	implementation	of	the	Universal	Module	Definition
pattern.	See	https://github.com/umdjs/umd	for	annotated	templates	for	this	pattern.	These
templates	also	show	how	to	declare	dependencies	between	modules	that	follow	this	pattern.

More	generally,	writing	code	that	achieves	the	same	result	both	on	the	server	and	in	the	browser
is	referred	to	as	Isomorphic	JavaScript.	See	http://isomorphic.net/	for	more	explanation	and
examples	of	this	principle.

https://github.com/umdjs/umd
http://isomorphic.net/

Writing	npm	packages
If	you	create	some	code	that	would	be	useful	to	others,	you	can	distribute	it	as	an	npm	package.
To	demonstrate	this,	we'll	implement	some	slightly	more	complex	functionality.

Note

You	can	find	the	example	code	for	this	section	at
https://github.com/NodeJsForDevelopers/autotoc.	Note	that,	unlike	previous	chapters,	there	is	not
one	per	commit	per	heading.	The	listings	in	the	rest	of	this	section	match	the	final	version	of	the
code.

We're	going	to	implement	a	tool	for	generating	a	table	of	contents	(ToC)	by	crawling	a	website.
To	help	with	this,	we'll	make	use	of	a	few	other	npm	packages:

request	provides	an	API	for	making	HTTP	requests,	which	is	higher-level	and	much	simpler
to	use	than	the	build	in	the	Node.js	http	module
cheerio	provides	jQuery-like	HTML	traversal	outside	of	the	browser	environment
denodeify,	mentioned	in	Chapter	8,	Mastering	Asynchronicity,	allows	us	to	use	the	request
library	with	promises	instead	of	callbacks

Tip

It's	common	for	npm	packages	to	depend	on	other	packages	in	this	way.	But	it	is	worth	minimizing
your	package's	dependencies	if	you	want	it	to	be	appealing	to	other	developers.	Packages	with
many	transitive	dependencies	can	add	a	lot	of	bloat	to	applications,	and	make	it	harder	for
developers	to	be	confident	that	they	understand	everything	they	are	pulling	into	their	application.

The	code	for	our	module	follows,	as	given	in	autotoc.js:

'use	strict';

const	cheerio	=	require('cheerio');

const	request	=	require('denodeify')(require('request'));

const	url	=	require('url');

class	Page	{

		constructor(name,	url)	{

				this.name	=	name;

				this.url	=	url;

				this.children	=	[];

		}

		

		spider()	{

				return	request(this.url)

						.then(response	=>	{

								let	$	=	cheerio.load(response.body);

								let	promiseChildren	=	[];

								$('a').each((i,	elem)	=>	{

										let	name	=	$(elem).contents().get(0).nodeValue;

https://github.com/NodeJsForDevelopers/autotoc

										let	childUrl	=	$(elem).attr('href');

										if	(name	&&	childUrl	&&	childUrl	!==	'/')	{

												let	absoluteUrl	=	url.resolve(this.url,	childUrl);

												if	(absoluteUrl.indexOf(this.url)	===	0	&&

																		absoluteUrl	!==	this.url)	{

														let	childPage	=	new	Page(name.trim(),	absoluteUrl);

														if	(childUrl.indexOf('#')	===	0)	{

																promiseChildren.push(Promise.resolve(childPage));

														}	else	{

																promiseChildren.push(childPage.spider());

														}

												}

										}

								});

								return	Promise.all(promiseChildren).then(children	=>	{

										this.children	=	children;

										return	this;

								});

						});

		}

}

module.exports	=	baseUrl	=>	new	Page('Home',	baseUrl).spider();

It's	not	important	to	understand	every	single	line	as	we're	more	interested	in	how	it	will	be
packaged.	The	important	points	are:

We	load	the	starting	page	then	follow	links	through	to	other	pages	and	process	these
recursively	to	build	up	the	entire	ToC
We	only	follow	links	to	more	specific	URLs	than	the	current	page	(that	is,	subpaths),	so	we
don't	get	into	infinite	loops
At	each	level,	we	load	all	child	pages	in	parallel	and	use	Promise.all	to	combine	the
results

We'll	also	add	a	simple	module	to	print	a	ToC	to	the	console,	as	given	in	consolePrinter.js:

'use	strict';

const	printEntry	=	function(entry,	indent)	{

								console.log(`${indent}	-	${entry.name}	(${entry.url})`);

								entry.children.forEach(childEntry	=>	{

												printEntry(childEntry,	indent	+	'		');

								})

				}

				

module.exports	=	toc	=>	printEntry(toc,	'');

Defining	an	npm	package
To	define	an	npm	package,	we	must	add	a	file	to	act	as	the	entry	point	to	our	package.	This	will
just	expose	the	inner	modules	appropriately,	as	given	in	index.js:

'use	strict';

module.exports	=	require('./autotoc.js');

module.exports.consolePrinter	=	require('./consolePrinter.js');

We	also	need	to	add	an	npm	package.json	file	to	define	our	package's	metadata.	To	create	this
file,	you	can	run	npm	init	in	the	command	line	and	follow	the	prompts.	In	our	case,	the	resulting
file	looks	like	the	following:

{

		"name":	"autotoc",

		"version":	"0.0.1",

		"description":	"Automatic	table	of	contents	generator	for	websites",

		"main":	"index.js",

		"author":	"hgcummings	<npmjs@hgc.io>	(http://hgc.io/)",

		"repository":	"https://github.com/NodeJsForDevelopers/autotoc",

		"license":	"MIT",

		"dependencies":	{

				"cheerio":	"^0.20.0",

				"denodeify":	"^1.2.1",

				"request":	"^2.69.0"

		}

}

We've	used	package.json	files	before	to	specify	dependencies	for	npm	install.	The	other
fields	become	much	more	important	when	publishing	a	package	to	npm.	Note	that	we	use	the	main
property	to	specify	our	package's	entry	point.	Actually,	index.js	is	the	default	value,	but
specifying	it	explicitly	makes	this	clearer.

Publishing	a	package	to	npm
Once	we	have	defined	our	package's	metadata,	publishing	it	to	npm	is	very	straightforward:

If	you	do	not	already	have	an	npm	account,	create	one	by	running	npm	adduser	and
specifying	a	username	and	password
Log	in	using	npm	login
In	the	root	folder	of	the	package,	run	npm	publish

That's	all	we	need	to	do!	Our	package	will	now	appear	in	the	global	npm	repository.	We	can
make	use	of	it	by	(in	a	new	folder)	running	npm	install	autotoc	and	writing	the	following
simple	demo	script	as	given	in	demo.js:

'use	strict';

const	autotoc	=	require('autotoc');

autotoc('http://hgc.io')

				.then(autotoc.consolePrinter,	err	=>	console.log(err));

Running	node	demo.js	at	the	command	line	produces	the	following	output:

Running	automated	clients	on	the	web
It's	fine	to	run	tools	like	this	against	your	own	website.	There	are	many	use	cases	for	this	kind	of
technique.	For	example,	a	script	that	spiders	through	an	entire	site	and	checks	every	page	can	be	a
useful	integration/smoke	test.

Use	cases	that	involve	crawling	sites	that	you	don't	own	require	more	care.	Any	public-facing	site
that	you	could	visit	in	a	browser,	you	could	also	access	with	an	automated	client	like	this.	But
issuing	a	large	number	of	automated	requests	against	the	same	host	is	undesirable.	It	could	be
considered	poor	etiquette	at	best	or	a	Denial	of	Service	(DoS)	attack	at	worst.

Clients	should	set	an	appropriate	User-Agent	HTTP	header.	Some	servers	might	reject	requests
from	clients	that	don't	specify	a	User-Agent	or	don't	appear	to	be	a	browser.	By	convention,
crawlers	should	send	a	User-Agent	including	the	word	bot	in	the	name	and	ideally	a	URL	to	find
out	more	about	the	bot.	The	request	library	makes	it	easy	to	specify	headers	by	passing	in	an
options	object.	For	example:

let	options	=	{

		url:	'http://hgc.io',

		headers:	{

				'User-Agent':	'Examplebot/1.0	(+http://example.com/why-im-crawling-your-

website)'

		}

};

request(options).then(...);

Crawlers	should	also	check	for	a	robots.txt	file	for	each	website	and	respect	any	rules	it
contains.	See	http://www.robotstxt.org/robotstxt.html	for	more	information.

Finally,	legitimate	crawlers	of	third-party	websites	should	also	rate-limit	their	requests	to	avoid
overwhelming	the	server.

http://www.robotstxt.org/robotstxt.html

Releasing	a	standalone	tool	to	npm
Some	of	the	npm	packages	we've	used	so	far	in	this	book	have	been	command-line	tools	rather
than	libraries,	for	example	Gulp.	Creating	a	command-line	tool	package	is	very	straightforward.
First,	we	need	to	define	the	script	that	we	want	people	to	be	able	to	invoke	from	the	command
line,	as	given	in	cli.js:

#!/usr/bin/env	node

'use	strict';

const	autotoc	=	require('./autotoc.js');

const	consolePrinter	=	require('./consolePrinter.js');

autotoc(process.argv[2])

				.then(consolePrinter,	err	=>	console.log(err));

This	looks	much	like	our	demo	script	from	before,	with	a	couple	of	differences:

The	line	at	the	beginning	of	the	script	(called	a	shebang	line,	starting	with	#!)	indicates	to
the	OS	that	this	script	should	be	executed	using	Node.js
The	URL	to	crawl	is	taken	from	a	command-line	argument

Now	we	just	need	to	specify	this	script	in	our	package.json:

{

		"name":	"autotoc",

		"version":	"0.1.1",

		"description":	"Automatic	table	of	contents	generator	for	websites",

		"main":	"index.js",

		"bin":	{

				"autotoc":	"./cli.js"

		},

		"author":	"hgcummings	<npmjs@hgc.io>	(http://hgc.io/)","repository":	

"https://github.com/NodeJsForDevelopers/autotoc",

		"license":	"MIT",

		"dependencies":	{

				"cheerio":	"^0.20.0",

				"denodeify":	"^1.2.1",

				"request":	"^2.69.0"

		}

}

To	publish	our	updated	package,	we	first	need	to	update	our	version	number.	You	can	update	this
in	the	package	directly	or	use	the	npm	version	command,	for	example

>	npm	version	minor

This	automatically	updates	the	version	number	to	the	next	major/minor/patch	version	(as
specified)	and	makes	a	new	git	commit	with	this	change.

Since	we	are	already	logged	into	npm,	we	can	now	publish	the	new	version	of	our	package	by
running	npm	publish	again.

We	can	now	make	use	of	our	CLI	tool	as	follows	(in	a	new	command	prompt	window):

>	npm	install	-g	autotoc

>	autotoc	http://hgc.io

Using	Node.js	modules	in	the	browser
At	the	beginning	of	this	chapter,	we	discussed	creating	universal	modules	that	can	run	under
Node.js	or	in	the	browser.	There	is	another	way	that	we	can	allow	our	code	to	run	in	both
environments.

Browserify	(http://browserify.org/)	allows	you	to	make	use	of	Node.js	modules	in	the	browser.	It
bundles	up	your	code	together	with	its	dependencies.	It	also	provides	browser-compatible	shims
to	emulate	Node.js	built-in	modules.

You	can	install	Browserify	via	npm:

>	npm	install	-g	browserify

Browserify	is	typically	used	to	package	applications.	For	example,	if	we	wanted	to	package	our
demo	usage	of	autotoc	from	the	previous	section,	we	could	run:

>	browserify	demo.js	-o	bundle.js

Browserify	will	create	a	single	JavaScript	file	containing	the	code	from	demo.js,	along	with	its
dependencies	and	transitive	dependencies.	If	we	include	this	in	an	HTML	page,	we	can	now	see
it	working	in	the	browser	console:

http://browserify.org/

You	can	also	use	Browserify	to	generate	browser-compatible	files	for	individual	modules,
following	the	Universal	Module	Definition	pattern	discussed	earlier	in	this	chapter.	For	example,
to	create	a	UMD	version	of	our	autotoc.js	module	from	the	previous	section,	we	could	run:

>	browserify	autotoc.js	-s	autotoc	-o	browser/scripts/autotoc.js

We	could	now	make	use	of	this	via	RequireJS.	Let's	create	a	simple	application	that	uses	autotoc
together	with	jQuery	to	generate	an	HTML	ToC.	First	we'll	need	an	HTML	file	to	contain	our
application	and	include	RequireJS,	as	given	in	browser/index.html:

<!DOCTYPE	html>

<head>

				<script	data-main="scripts/main"	

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.22/require.min.js"

></script>

</head>

<body>

</body>

Now	we	can	implement	our	application	itself,	as	given	in	browser/scripts/main.js:

requirejs.config({

		paths:	{

				jquery:	'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.1/jquery.min'

		}

});

require(['autotoc',	'jquery'],	function(autotoc,	$)	{

		'use	strict';

		autotoc('http://hgc.io').then(toc	=>	{

				let	printEntry	=	function(entry,	parent)	{

						let	list	=	$(document.createElement('ul'));

						list.append(

								`${entry.name}`);

						entry.children.forEach(childEntry	=>	{

								printEntry(childEntry,	list);

						})

						parent.append(list);

				}

								

				printEntry(toc,	$('body'));

		},	err	=>	console.log(err));

});

This	results	in	the	following	output:

Controlling	Browserify's	output
Note	that,	by	default,	Browserify	generates	a	bundle	of	your	code	and	all	of	its	dependencies.
Including	transitive	dependencies,	this	can	result	in	a	very	large	file.	The	autotoc	module	is	only
42	lines	long,	but	the	generated	bundle	is	over	80,000	lines!	Our	application	above	includes	both
jQuery	(via	RequireJS)	and	a	version	of	Cheerio	(via	Browserify).	This	is	particularly	wasteful,
since	much	of	Cheerio	is	a	re-implementation	of	jQuery.

You	can	instruct	Browserify	to	exclude	specific	modules	and	to	exclude	all	external	modules.
This	is	particularly	useful	for	third-party	modules	that	follow	the	UMD	pattern.	These	do	not	need
to	be	browserified	and	can	be	excluded	from	the	generated	bundle.	You	can	then	load	them
separately	in	the	browser,	via	an	additional	script	tag	or	using	RequireJS.

For	more	information	on	Browserify's	usage	options,	see	the	official	documentation	at
https://github.com/substack/node-browserify#usage.

Browserify	provides	a	lot	of	flexibility	for	bundling	modules	in	different	ways.	It	is	particularly
useful	when	working	on	a	single	codebase	with	both	server-side	and	client-side	functionality.	It
allows	you	to	write	all	of	your	code	using	Node.js-style	modules	and	to	easily	share	modules
between	the	server	and	the	client.

https://github.com/substack/node-browserify#usage

Summary
In	this	chapter,	we	have	written	a	multi-environment	module	following	the	universal	module
definition	pattern,	created	an	npm	package	for	a	library	and	a	command-line	tool,	and	packaged
Node.js	code	for	the	browser	using	Browserify.

This	demonstrates	the	flexibility	of	Node.js	and	the	range	of	use	cases	for	JavaScript	and	npm
beyond	just	server-side	code.	In	the	final	chapter,	we'll	look	at	the	broader	context	around
Node.js.	We'll	see	some	of	the	newer	languages	and	upcoming	language	features	for	the	platform
and	how	Node.js	interacts	with	other	platforms	like	.NET.

Chapter	14.	Node.js	and	Beyond
So	far,	this	book	has	shown	you	how	to	work	with	JavaScript	and	Node.js	in	a	variety	of	use
cases.	In	this	chapter,	we'll	look	at	how	the	JavaScript	ecosystem	is	continuing	to	evolve.	We'll
also	see	how	the	.NET	and	JavaScript	ecosystems	influence	each	other	and	how	to	integrate	them
within	a	single	project.

While	the	chapters	so	far	have	aimed	to	start	you	on	your	path	into	Node.js	and	JavaScript,	this
chapter	aims	to	map	out	the	remaining	territory.	Each	of	the	preceding	chapters	has	provided	in-
depth	step-by-step	coverage	of	a	single	topic.	This	chapter	will	cover	a	much	broader	range	of
topics,	with	links	to	resources	for	further	reading.

In	this	chapter,	we	will:

Understand	how	Node.js	and	JavaScript	are	continuing	to	evolve
Introduce	some	of	the	new	and	upcoming	JavaScript	language	features
Look	at	some	alternative	programming	languages	for	Node.js	and	the	web
Consider	principles	from	Node.js	that	can	apply	to	.NET	programming
See	how	to	integrate	Node.js	with	.NET

Understanding	Node.js	versioning
As	mentioned	in	Chapter	1,	Why	Node.js?,	the	release	of	Node.js	v4	in	2015	shows	the	platform
coming	to	maturity.	If	you've	used	Node.js	before	the	end	of	2015,	you	would	have	seen	version
numbers	such	as	v0.8.0	or	v0.12.0.	So	why	the	leap	to	v4.0.0?

A	brief	history	of	Node.js
Node.js	is	an	open-source	project	with	a	corporate	sponsor,	Joyent.	This	means	that	a	single
company	has	a	lot	of	influence	over	the	direction	of	Node.js,	but	anyone	can	create	their	own	fork
of	the	source	code.	This	is	exactly	what	happened	at	the	end	of	2014.	A	group	of	major
contributors	to	Node.js	split	the	project	to	create	a	new	fork,	named	io.js.	A	few	key	properties	of
io.js	were:

A	more	open	governance	model
A	more	regular	release	cycle,	keeping	more	up-to-date	with	the	underlying	V8	engine,	to	take
advantage	of	performance	improvements	and	newer	JavaScript	language	features
A	move	to	semantic	versioning	(see	http://semver.org/),	resulting	in	major	version	numbers
increasing	more	quickly

Over	the	course	of	2015,	the	Node.js	project	reshaped	itself	to	take	on	the	above	properties	and
align	with	io.js.	In	September	2015,	the	release	of	Node.js	v4	brought	the	two	projects	back
together	under	a	new	governance	model.	Node.js	v4	supersedes	(and	merges)	both	Node.js	v0.12
and	io.js	v3.3.	You	can	read	more	about	the	new	governance	model	at
https://nodejs.org/en/about/governance/.

http://semver.org/
https://nodejs.org/en/about/governance/

Introducing	the	Node.js	LTS	schedule
The	timetable	for	Node.js	releases	now	follows	a	regular	schedule.	A	new	stable	release	occurs
every	6	months.	Each	stable	branch	receives	fixes	as	well	as	new	features	that	reach	maturity.	The
lifetime	of	stable	releases	alternates	as	follows	(as	shown	in	the	following	chart):

Odd-numbered	branches	live	for	9	months
Even-numbered	branches	enter	long-term	support	(LTS)	after	6	months,	receiving	bug	fixes
but	no	new	features
Long-term	support	lasts	for	30	months,	with	the	final	12	months	being	maintenance	mode
(critical	bug	fixes	only)

You	can	find	more	details	of	the	LTS	model	at	https://github.com/nodejs/LTS.

The	LTS	model	allows	you	to	have	confidence	in	Node.js	as	a	platform	for	your	application.	The
code	in	this	book	targets	Node.js	v6,	the	current	stable	release	at	the	time	of	publication.	This
version	will	be	in	LTS	through	to	April	2019,	some	three	years	later.

https://github.com/nodejs/LTS

Understanding	ECMAScript	versioning
ECMAScript	is	the	formal	standard	for	the	JavaScript	language.	The	first	three	iterations	of	the
language	occurred	between	1997	and	1999.	A	10-year	gap	followed	before	ECMAScript	5	in
December	2009.	ES5	introduced	few	new	features	and	focused	on	cleaning	up	the	language.	It
introduced	strict	modes	and	addressed	various	inconsistencies,	flaws,	or	gotchas	in	earlier
versions.

2015	saw	a	major	change	to	the	language	and	to	the	versioning	approach.	ECMAScript	2015
(formerly	ECMAScript	6)	introduced	many	significant	new	language	features.	These	include
classes,	let/const	keywords	and	block-scoping,	arrow	functions,	and	native	promises.	In	the
rest	of	this	chapter,	we'll	look	at	some	of	the	other	significant	new	features	in	ES2015.

The	name	change	from	ES6	to	ES2015	indicates	a	new	yearly	versioning	model.	From	2015
onwards,	there	will	be	a	new	version	of	the	ECMAScript	standard	every	year.	Planned	features
that	aren't	quite	ready	for	release	will	wait	until	the	following	year.	For	this	reason,	ECMAScript
2016	is	a	small	release	with	only	a	couple	of	new	features.

Note	that	ECMAScript	is	the	standard	and	it	takes	time	for	new	features	to	be	implemented.
Indeed,	some	ES2015	features	are	still	missing	from	the	JavaScript	engines	in	popular	browsers.
Note	though	that	the	major	browser	vendors	are	part	of	the	ECMAScript	standards	process.	So
browsers,	and	Chrome's	V8	engine	(used	by	Node.js)	in	particular,	should	generally	not	lag	too
far	behind	the	latest	standard.

Exploring	ECMAScript	2015
We	have	already	used	many	of	the	new	features	of	ES2015	throughout	this	book,	such	as	arrow
functions,	template	strings,	and	promises.	We	have	also	already	seen	ES2015's	syntax	for	classes
in	Chapter	3,	A	JavaScript	Primer.

ES2015	is	a	major	update	to	the	language,	including	many	new	features	and	syntax	improvements.
This	section	will	cover	some	of	the	other	useful	improvements	that	we	haven't	seen	so	far	in	the
book.	For	complete	coverage	of	everything	new	in	ES2015,	see	the	excellent	Exploring	ES6,
available	at	http://exploringjs.com/es6/.

http://exploringjs.com/es6/

Understanding	ES2015	modules
As	mentioned	in	previous	chapters,	ES2015	introduces	a	new	module	specification.	Recall	from
Chapter	4,	Introducing	Node.js	Modules,	that	each	module	system	provides	the	following:

A	way	of	declaring	a	module	with	a	name	and	its	own	scope
A	way	of	defining	functionality	provided	by	the	module
A	way	of	importing	a	module	into	another	script

Modules	are	scoped	to	their	containing	file,	as	in	CommonJS.	Modules	provide	functionality	via
a	new	export	keyword.	Prefixing	an	expression	with	export	is	equivalent	to	making	it	a
property	of	the	module.exports	variable	in	CommonJS.	A	special	default	export	is
equivalent	to	assigning	the	value	of	module.exports	itself.	Modules	are	imported	using	an
import	keyword	rather	than	a	special	require	function.	There	is	one	additional	restriction:
imports	must	come	at	the	top	of	the	script,	before	any	conditional	blocks	or	other	logic.

These	might	seem	like	small	syntax	changes,	but	they	have	an	important	implication.	Because
defining	and	importing	modules	doesn't	involve	assignment	and	method	calls,	the	structure	of
dependencies	between	modules	is	static.	This	allows	the	JavaScript	engine	to	optimize	loading	of
modules	(particularly	important	in	the	browser).	It	also	means	that	cyclic	dependencies	between
modules	can	be	resolved.

You	can	find	out	more	about	the	new	ES2015	module	syntax	at	http://jsmodules.io/.

http://jsmodules.io/

Using	syntax	improvements	from	ES2015
In	this	section	we'll	look	at	some	of	the	new	syntax	features	in	ES2015	that	we	haven't	used	in	the
book	so	far.	These	are	all	available	in	the	latest	JavaScript	engines,	including	Node.js	v6.

The	for...	of	loop

Let's	say	we	have	an	array	defined	as	follows:

let	myArray	=	[1,	2,	3];

Let's	also	say	that	another	library	has	added	a	helper	function	to	all	arrays.	Perhaps	something
like	our	flatMap	function	from	Chapter	13,	Creating	JavaScript	Packages.

Array.prototype.flatMap	=	function(callback)	{

				return	Array.prototype.concat.apply([],	this.map(callback));

};

If	you	wanted	to	iterate	through	all	the	members	of	an	array,	you	might	be	tempted	to	use
JavaScript's	for...	in	construct	as	follows:

for	(let	i	in	myArray)	{

				console.log(myArray[i]);

}

This	doesn't	work	very	well	though,	as	it	includes	properties	on	the	array's	prototype	and	prints
out	the	flatMap	function	as	well	as	the	elements	in	the	array.	This	is	a	common	problem	with
for...	in	loops,	when	used	with	objects	as	well	as	with	arrays.	The	standard	way	to	avoid	it	is
by	skipping	prototype	properties	as	follows:

for	(let	i	in	myArray)	{

				if	(myArray.hasOwnProperty(i))	{

								console.log(myArray[i]);

				}

}

This	prints	out	just	the	elements	of	the	array,	as	we	want.	A	similar	loop	could	also	be	used	to
print	the	properties	of	an	object,	without	accidentally	attempting	to	print	out	functions	from	the
prototype	(which	may	have	been	added	by	a	third-party	library).

Note	that	for...	in	also	doesn't	technically	guarantee	the	order	in	which	it	iterates	through	the
keys	of	an	object.	This	means	it's	not	really	the	best	thing	to	use	with	arrays,	where	we	expect	a
specific	order.	That's	why	the	standard	way	to	iterate	through	arrays	is	using	a	plain	old	for	loop,
as	follows:

for	(let	i	=	0;	i	<	myArray.length;	++i)	{

				console.log(myArray[i]);

}

ES2015	addresses	these	issues	with	a	new	for...	of	loop,	which	looks	like	this:

for	(let	value	of	myArray)	{

				console.log(value);

}

The	syntax	is	very	similar	to	for...	in	loops.	However,	you	do	not	need	to	filter	out	prototype
members	as	these	are	excluded.	It	can	be	used	with	any	iterable	objects	(such	as	arrays)	and	will
follow	the	natural	ordering	of	the	iterable.	In	short,	for...	of	loops	are	like	for...	in	loops
but	without	any	nasty	surprises.

The	spread	operator	and	rest	parameters

The	spread	operator	allows	you	to	treat	arrays	as	if	they	were	a	sequence	of	values.	For
example,	to	call	a	function:

let	myArray	=	[1,	2,	3];

let	myFunc	=	(foo,	bar,	baz)	=>	(foo	+	bar)	*	baz;

console.log(myFunc(...values));	//	Prints	9

You	can	also	use	the	spread	operator	within	array	literals,	for	example:

let	subClauses	=	['2a',	'2b',	'2c'];

let	clauses	=	['1',	'2',	...subClauses,	'3'];

				//	Equivalent	to	['1',	'2',	'2a',	'2b',	'2c',	'3']

The	rest	parameter	syntax	serves	the	opposite	purpose,	turning	a	sequence	of	values	into	an
array.	This	is	similar	to	the	params	keyword	in	C#	or	varargs	in	Java.	For	example:

function	foldLeft(combine,	initial,	...values)	{

				let	result	=	initial;

				for	(let	value	of	values)	{

							result	=	combine(result,	value);

				}

				return	result;

}

console.log(foldLeft((x,	y)	=>	x+y,	0,	1,	2,	3,	4));	//	Prints	10

Destructuring	assignment

Destructuring	allows	you	to	use	structuring	syntax	to	assign	multiple	variables	together.	For
example,	you	can	assign	variables	using	the	array	literal	syntax	to	destructure	arrays:

let	foo,	bar;

[foo,	bar]	=	[1,	2];	//	Equivalent	to	foo	=	1,	bar	=	2

You	can	also	combine	destructuring	with	the	spread	operator:

[foo,	bar,	...rest]	=	[1,	2,	3,	4,	5];

				//	Equivalent	to	foo	=	1,	bar	=	2,	rest	=	[3,	4,	5]

Finally,	you	can	use	destructuring	with	the	object	literal	syntax:

{	foo,	bar	}	=	{	foo:	1,	bar:	2	};	//	Equivalent	to	foo=1,	bar=2

Destructuring	is	particularly	useful	for	dealing	with	complex	return	values.	Imagine	if	any	of	the
expressions	on	the	right-hand	side	of	the	equals	sign	in	the	above	examples	were	actually	function
calls.

Destructuring	is	also	useful	for	performing	multiple	assignments	in	a	single	statement.	For
example:

[foo,	bar]	=	[bar,	foo];	//	Swap	foo	and	bar	in	place

[previous,	current]	=	[current,	previous	+	current];

				//	Calculation	step	for	a	Fibonacci	sequence

Introducing	generators
ES2016	introduces	generator	functions	and	the	yield	keyword.	You	may	already	be	familiar
with	the	yield	keyword	in	C#.	Methods	that	return	IEnumerable/IEnumerator	can	include	the
yield	keyword	to	return	one	element	at	a	time,	suspending	execution	of	the	method	until	the	next
value	is	requested.	You	can	do	the	same	with	generator	functions	in	JavaScript.	The	following
example	is	a	JavaScript	implementation	of	one	of	the	examples	from	the	MSDN	documentation	of
C#'s	yield.	It	prints	the	first	eight	powers	of	2	(note	the	asterisk	after	the	function	keyword,
which	denotes	this	as	a	generator	function):

'use	strict';

function*	powers(number,	exponent)	{

				let	result	=	1;

				for	(let	i	=	0;	i	<	exponent;	++i)	{

								result	=	result	*	number;

								yield	result;

				}

}

for	(let	i	of	powers(2,	8))	{

				console.log(i);

}

Note	that	for...	of	loops	work	with	generators.	The	above	loop	is	equivalent	to	the	following
code:

let	generator	=	powers(2,	8);

let	current	=	generator.next();

while	(!current.done)	{

				console.log(current.value);

				current	=	generator.next();

}

You	can	see	that	generators	are	very	similar	to	the	IEnumerator	interface	in	C#.	Note	that	they
are	slightly	more	powerful	than	this	though.	We	can	also	pass	a	value	into	a	generator's	next
method	to	allow	it	to	be	used	when	execution	continues	in	the	generator	function.	The	following
dummy	example	illustrates	this:

'use	strict';

function*	generator()	{

				let	received	=	yield	1;

				console.log(received);

				return	3;				

}

let	instance	=	generator();

let	first	=	instance.next();

console.log(first);

let	last	=	instance.next(2);

console.log(last);

Running	the	previous	example	produces	the	following	output:

>	{	value:	1,	done:	false	}

>	2

>	{	value:	3,	done:	true	}

This	two-way	communication	makes	generators	much	more	than	just	IEnumerator	for
JavaScript.	They	are	a	powerful	control	flow	mechanism,	especially	when	combined	with
promises.	See	https://www.promisejs.org/generators/	for	a	derivation	of	C#-like	async/await
functionality	using	generators	and	promises	(with	yield	taking	the	place	of	C#'s	await
keyword).	It's	also	worth	noting	that	async	functions	are	planned	for	a	future	version	of
ECMAScript	(probably	ES2017)	and	will	work	in	a	similar	way.	In	the	meantime,	you	can
achieve	a	similar	programming	model	using	the	Promise.coroutine	method	provided	by	the
bluebird	library,	which	is	based	on	generators.	See
http://bluebirdjs.com/docs/api/promise.coroutine.html	for	details.

https://www.promisejs.org/generators/
http://bluebirdjs.com/docs/api/promise.coroutine.html

Introducing	ECMAScript	2016
As	mentioned	earlier	in	this	chapter,	ECMAScript	2016	is	a	small	release	with	only	a	couple	of
new	features.	These	are	an	includes	method	for	arrays	and	the	exponentation	operator	**.

You	can	write	myArray.includes(value)	instead	of	myArray.indexOf(value)	!==	-1.	Note
that	these	expressions	are	not	quite	equivalent.	You	can	use	includes	to	check	for	the	value	NaN
within	an	array,	which	you	can't	do	with	indexOf.

The	exponential	operator	allows	you	to	rewrite	Math.pow(coefficient,	exponent)	as
coefficient	**	exponent.

You	can	also	combine	it	with	an	assignment,	as	in	myVariable	**=	2.

Going	beyond	JavaScript
If	you	want	to	target	browsers	or	Node.js,	JavaScript	is	the	only	language	natively	supported	by
these	environments.	This	is	different	to	VM-based	environments	like	the	.NET	runtime	and	the
JVM,	which	support	multiple	languages.

The	.NET	runtime	supports	C#,	F#,	VB.NET,	and	others.	The	JVM	supports	Java,	Scala,	Clojure,
and	others.	These	languages	work	by	compiling	down	to	an	assembly	language	for	the
environment's	VM.	This	is	the	Common	Intermediate	Language	in	.NET	or	Java	bytecode	in	the
case	of	the	JVM.

There	is	a	reason	why	programmers	don't	all	write	CIL	or	Java	bytecode	though.	These	are	low-
level	machine	languages	and	much	less	human-friendly	than	C#,	Java,	and	so	on.	In	general,
higher-level	languages	can	support	better	productivity,	as	well	as	safety	(for	example,	through
type	systems	and	memory	management).

There	is	also	a	reason	why	.NET	programmers	don't	always	use	C#	and	JVM	programmers	don't
always	use	Java.	A	range	of	languages	can	serve	different	use	cases	better.	It	can	also	just	be	a
matter	of	personal	taste	for	the	semantics	of	a	particular	language.

JavaScript	has	been	called	the	Assembly	Language	for	the	Web
(http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebSematicMarkupIsDeadCleanVsMachinecodedHTML.aspx
While	JavaScript	is	not	a	low-level	or	machine	language,	it	is	a	common	language	for	its
platform.	Like	CIL	and	Java	bytecode,	it	can	serve	as	a	compile	target	for	other	languages.	And,
like	.NET	and	the	JVM,	there	is	an	appetite	amongst	developers	for	a	variety	of	languages	on	the
same	platform.

http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebSematicMarkupIsDeadCleanVsMachinecodedHTML.aspx

Exploring	compile-to-JavaScript	languages
There	are	several	languages	that	support	web	and	Node.js	development	by	compiling	down	to
JavaScript.	We'll	look	at	a	few	of	the	more	prominent	of	these	languages	in	this	section.

TypeScript

The	TypeScript	language	is	developed	and	supported	by	Microsoft.	Its	key	aim	is	to	include
features	that	aid	large-scale	application	development.	TypeScript	can	be	compiled	down	to
ES2016,	ES5,	or	even	ES3.	So	it	works	in	any	modern	JavaScript	environment.

TypeScript	is	based	closely	on	the	JavaScript	syntax.	It	is	a	superset	of	JavaScript,	so	you	can
write	ordinary	JavaScript	and	gradually	use	TypeScript	features	more	as	you	learn	it.	TypeScript
also	tries	to	match	the	syntax	of	upcoming	JavaScript	features	where	possible.	This	allows
developers	to	start	using	new	JavaScript	features	earlier.

The	most	important	TypeScript	features	aid	large-scale	application	development.	TypeScript	has
had	classes	and	modules	for	some	time,	to	help	with	structuring	code.	As	the	name	suggests,
TypeScript	also	adds	type	annotations	and	type	inference.	It	also	adds	new	ways	of	defining	and
specifying	types,	including	enums,	generic	types,	and	interfaces.	This	makes	for	a	safer	language
as	the	compiler	can	catch	more	errors.	It	also	lets	IDEs	offer	features	like	code	completion
(namely,	Intellisense)	and	better	source	code	navigation.

Finally,	TypeScript	makes	it	possible	to	specify	type	definitions	for	libraries	written	in	plain
JavaScript.	Type	definitions	for	many	third-party	libraries	can	be	found	at
https://github.com/DefinitelyTyped/DefinitelyTyped.	These	provide	type	checking	and	code
completion	when	working	with	library	code	too.

Here's	an	example	of	our	flatMap	function	from	the	previous	chapter	written	with	type
annotations:

function	flatMap<T,	R>(

				source:T[],

				callback:(T)=>R[]):	R[]	{

				return	Array.prototype.concat.apply([],

								source.map(callback));

}

let	result	=	flatMap([1,	2,	3],	(i:number)	=>	[i,	i	+	0.5]);

console.log(result);	//	Prints	[1,	1.5,	2,	2.5,	3,	3.5]

The	syntax	for	generics	may	be	familiar	from	C#.	Type	annotations	follow	the	expression	or
parameter,	separated	by	a	colon.	We	could	specify	the	generic	type	when	we	call	the	function	too,
but	in	this	case	it	can	be	inferred.	Note	that	our	method	has	two	generic	types,	as	our	callback
could	map	to	an	array	of	a	different	element	type.	The	TypeScript	compiler	will	infer	the	type	of
result	as	number[].	Note	that	this	inference	actually	takes	a	few	steps:

We	specify	that	the	callback	parameter	i	has	a	type	number
Therefore,	the	expressions	i	and	i	+	0.5	also	both	have	a	type	number

https://github.com/DefinitelyTyped/DefinitelyTyped

Therefore,	the	result	type	of	our	callback	is	number[]
Therefore,	the	argument	for	the	type	parameter	R	must	be	number

If	we	did	not	specify	the	type	of	i,	then	the	compiler	would	only	infer	the	type	of	result	as
any[],	that	is	an	array,	but	of	an	unspecified	element	type.

You	can	learn	more	about	TypeScript	at	http://www.typescriptlang.org/.

Tip

If	you're	more	familiar	with	Java	than	.NET,	and	especially	if	you're	familiar	with	the	Eclipse
IDE	in	particular,	you	may	also	be	interested	in	N4JS	(http://numberfour.github.io/n4js/).	This
language	has	similar	goals	to	TypeScript,	but	is	inspired	by	Java	and	has	an	IDE	based	on
Eclipse.

CoffeeScript

CoffeeScript	was	one	of	the	earliest	successful	compile-to-JavaScript	languages.	CoffeeScript
streamlines	the	syntax	of	JavaScript	and	adds	features	for	writing	more	terse	and	expressive
code.

CoffeeScript	is	a	good	example	of	when	taste	might	influence	language	choice.	Developers	may
find	CoffeeScript	more	readable	and/or	easier	to	write.	Ruby	or	Python	programmers	may	be
particularly	comfortable	with	CoffeeScript.	They'll	find	its	syntax	and	many	of	its	language
features	familiar.

Many	features	from	CoffeeScript	have	subsequently	appeared	in	ES2015,	for	example	arrow
functions,	destructuring,	and	the	splat/spread	operator.	Unlike	TypeScript,	CoffeeScript	does	not
attempt	to	match	the	syntax	of	JavaScript,	neither	for	current	nor	upcoming	features.	It	does
however	offer	seamless	interoperability	with	JavaScript	code.

Comprehensions	are	one	of	CoffeeScript's	most	expressive	features	and	do	not	appear	in	ES2015.
You	may	be	familiar	with	comprehensions	from	Python.	They	are	also	a	little	like	LINQ	in	C#,	in
that	they	allow	you	to	express	operations	on	lists	without	using	loops.	The	following	example
prints	the	squares	of	even	numbers,	first	in	JavaScript	and	then	as	a	one-liner	in	CoffeeScript.	As
squares.js:

var	i,	n;

for	(n	=	i	=	1;	i	<=	10;	n	=	++i)	{

				if	(n	%	2	===	0)	{

								console.log(n	*	n);

				}

}

As	squares.coffee:

console.log	n*n	for	n	in	[1..10]	when	n%2	is	0

http://www.typescriptlang.org/
http://numberfour.github.io/n4js/

And	beyond...

TypeScript	and	CoffeeScript	are	specifically	designed	to	target	JavaScript.	There	are	many	other
projects	in	existence	that	allow	more	general	languages	to	compile	JavaScript.	Note	that	not	all
such	projects	are	mature	or	well-maintained.	Languages	whose	own	project	team	supports	and
maintains	compilation	to	JavaScript	tend	to	be	a	safer	choice.	Both	Dart
(https://www.dartlang.org/)	and	Clojure	(http://clojure.org/)	provide	first-class	support	for
compiling	to	JavaScript.

https://www.dartlang.org/
http://clojure.org/

Introducing	a	true	assembly	language	for	the	web
As	discussed	above,	while	JavaScript	can	be	a	common	compile	target	for	the	web	and	Node.js,
it	is	not	a	true	assembly	language.	It	is	a	high-level	human-readable	language,	rather	than	an
optimized	machine	language.	There	are	projects	to	introduce	just	such	a	language	into	the	web
environment	though.	This	means	defining	an	assembly	language	implemented	by	all	browsers,
including	Chrome's	V8	engine	and	therefore	Node.js.

Understanding	asm.js

The	first	attempt	at	such	a	language	is	asm.js	(http://asmjs.org/),	developed	by	Mozilla.	This	is	a
strict	subset	of	JavaScript,	which	means	it	can	run	on	any	browser.	But	browsers	that	support
asm.js	can	precompile	it	and	heavily	optimize	its	execution.	Demanding	applications	such	as	3D
games	can	be	recompiled	to	target	asm.js	and	run	seamlessly	in-browser.	The	first	environment
with	full	support	for	asm.js	is	Mozilla's	own	Firefox	browser.	It	will	also	be	supported	in
Microsoft's	new	Edge	browser.	The	V8	engine	used	by	Chrome	(and	Node.js)	does	not	yet	pre-
compile	asm.js,	but	V8	does	make	some	optimizations	to	allow	asm.js	to	run	much	faster	than	if
interpreted	as	plain	JavaScript.

Understanding	WebAssembly

WebAssembly	(https://webassembly.github.io/)	is	a	new	standard	for	a	true	assembly	language
for	the	web.	Unlike	asm.js	it	is	not	a	subset	of	JavaScript	and	won't	run	in	today's	browsers.	It
defines	a	new	assembly	language	more	like	CIL	or	Java	bytecode.	It	is	developed	by	the	W3C
standards	body,	with	input	from	the	major	browser	vendors.	There	are	early	implementations	of
WebAssembly	in	preview	releases	of	Mozilla	Firefox,	Google	Chrome,	and	Microsoft	Edge.

As	an	application	developer,	you	do	not	need	to	be	able	to	write	WebAssembly	any	more	than	you
need	to	write	CIL	or	Java	bytecode.	These	are	all	low-level	languages	to	act	as	compilation
targets.	In	future,	WebAssembly	may	replace	JavaScript	as	the	common	compile	target	for	the
web	(and	Node.js).	Other	languages,	including	JavaScript	itself,	may	all	compile	to
WebAssembly.

This	would	mean	that	JavaScript	would	no	longer	be	the	only	native	language	for	the	web	and
Node.js.	But	JavaScript	will	almost	certainly	remain	the	default	development	language	for	these
environments,	just	as	C#	and	Java	are	for	their	respective	environments.	Knowledge	of	the
execution	model	of	Node.js	will	still	be	relevant	in	any	language	and	JavaScript	will	still	be	the
most	natural	fit	for	this	execution	model.	Knowledge	of	JavaScript	will	also	be	important	for
working	with	the	many	well-established	libraries	based	on	it.

There	would	be	other	benefits	to	JavaScript	from	WebAssembly.	Interoperation	between
JavaScript	and	other	languages	will	become	easier.	There	will	be	more	options	for	implementing
performance-critical	code.	New	versions	of	JavaScript	will	be	able	to	roll	out	more	quickly	(as	a
single	JavaScript	to	WebAssembly	compiler	can	target	all	browser	engines).

http://asmjs.org/
https://webassembly.github.io/

JavaScript	and	ASP.NET
On	the	server	side,	we	don't	need	to	wait	for	WebAssembly	to	mature	in	order	to	work	with
Node.js	and	.NET	together.	There	is	already	some	convergence	between	programming	on	these
two	platforms	and	support	for	interoperability	between	them.

Exploring	.NET	Core
The	next	version	of	NET,	called	.NET	Core,	makes	some	major	changes	to	the	platform.	Some	of
these	changes	might	seem	familiar	if	you've	spent	some	time	working	with	Node.js.	This	is	not
just	a	coincidence.	Microsoft	are	incorporating	good	ideas	that	have	worked	in	Node.js	and
elsewhere	into	their	ecosystem.

Defining	project	structure	in	.NET	Core

.NET	Core	separates	the	programming	platform	from	the	IDE.	Microsoft	still	recommends	using
Visual	Studio,	but	have	made	it	much	easier	to	use	other	editors.	For	example,	the	OmniSharp
project	(http://www.omnisharp.net/)	supports	development	in	other	editors,	providing	features
such	as	Intellisense	outside	of	Visual	Studio.

One	aspect	of	this	change	is	simplifying	the	use	of	.csproj	files.	In	previous	versions	of	.NET,
these	large	XML	files	were	the	canonical	description	of	each	C#	project.	They	included	important
things	like	compilation	options,	target	platforms,	build	steps,	and	dependencies.	They	were
mainly	generated	by	Visual	Studio,	difficult	to	edit	by	hand,	and	often	particularly	awkward	to
merge	in	source	control.	To	satisfy	Visual	Studio,	they	also	needed	to	list	every	single	source	file
in	the	project.

Many	of	these	drawbacks	are	addressed	in	.NET	Core.	New	tools	make	it	much	easier	to	edit
.csproj	files	from	the	command	line.	A	project's	sources	are	just	the	files	under	its	parent	folder
(not	listed	in	.csproj	or	any	other	metadata	file).	Dependencies	are	declared	separately	in	a
more	lightweight	JSON-based	file.

Many	of	these	improvements	are	inspired	by	programming	platforms	like	Node.js.	In	fact,	early
release	candidates	for	.NET	Core	removed	the	need	for	.csproj	files	entirely	and	introduced
project.json	files	(just	like	in	Node.js)	for	defining	projects.	Although	.NET	Core	ultimately
uses	.csproj	files	(for	continued	compatibility	with	MSBuild),	it	aims	to	keep	those	aspects	of
more	lightweight	approaches	that	are	most	important	to	developers.

Managing	dependencies	in	.NET	Core

The	NuGet	package	manager	has	been	part	of	the	.NET	ecosystem	for	several	years.	NuGet
becomes	even	more	important	in	.NET	Core.	The	framework	and	runtime	themselves	are
distributed	as	NuGet	packages.	Dependencies	are	specified	as	NuGet	package	names	(and
versions)	rather	than	DLL	paths.	NuGet	packages	can	also	be	a	useful	unit	of	deployment	for	your
own	projects.

Just	like	with	Node.js,	you	can	checkout	the	source	code	of	one	of	your	dependencies	to	a	local
folder	and	reference	it	there.	This	allows	you	to	tinker	with	open	source	libraries	and	debug	them
as	part	of	your	program.

Building	web	applications	in	ASP.NET	Core

http://www.omnisharp.net/

ASP.NET	Core	consolidates	ASP.NET	MVC	and	WebAPI	into	a	single	framework.	It	also	brings
OWIN	to	the	fore	as	the	standard	abstraction	for	implementing	web	applications.

OWIN	simply	defines	a	standard	for	passing	request	and	response	objects	between	a	host	and	an
application.	Although	OWIN	has	been	around	for	a	while	and	has	its	own	history,	this	is	a	similar
abstraction	to	the	http.createServer	method	in	Node.js.	You	can	read	more	about	OWIN	at
https://docs.asp.net/en/latest/fundamentals/owin.html.

Related	to	this,	ASP.NET	also	uses	middleware	as	the	standard	building	block	for	web
applications.	Again,	although	middleware	in	.NET	has	its	own	history,	the	abstraction	is	very
similar	to	middleware	in	Express.	Applications	set	up	a	pipeline	of	middleware,	with	each
having	access	to	the	request,	response,	and	the	next	handler	in	the	chain.	Built-in	middleware	is
available	for	cross-cutting	concerns	such	as	authentication,	sessions,	and	routing.	You	can	read
more	about	middleware	at	https://docs.asp.net/en/latest/fundamentals/middleware.html

https://docs.asp.net/en/latest/fundamentals/owin.html
https://docs.asp.net/en/latest/fundamentals/middleware.html

Integration	with	JavaScript
Visual	Studio	has	provided	good	support	for	client-side	JavaScript	development	for	several
years.	Microsoft	have	improved	and	updated	this	in	the	latest	versions	of	ASP.NET	and	Visual
Studio:	for	example,	by	including	better	integration	with	task	runners	such	as	Gulp	and	Grunt.	You
can	read	more	about	client-side	JavaScript	support	at	https://docs.asp.net/en/latest/client-
side/index.html.

Server-side	JavaScript	integration	with	.NET

The	Edge.js	project	(https://github.com/tjanczuk/edge)	allows	Node.js	and	.NET	to	run	within	the
same	process.	It	also	defines	a	very	simple	way	for	marshalling	method	calls	between	the	two.
This	is	much	faster	than	marshalling	calls	out-of-process	(for	example,	via	an	HTTP	call	to	a
process	on	the	local	machine).

Edge.js	allows	you	to	take	the	best	of	.NET	and	Node.js.	Perhaps	you	want	to	use	Node.js	to	put	a
web	interface	on	top	of	your	existing	.NET	business	logic.	Or	perhaps	you're	using	Node.js	for
rapid	development	of	most	of	your	application,	but	have	a	particularly	CPU-intensive	operation
that	would	be	easier	to	optimize	in	.NET.

Making	calls	from	Node.js	to	.NET	(or	vice	versa)	is	very	simple.	For	example,	if	we	have	the
following	.NET	class:

using	System;

using	System.Threading.Tasks;

namespace	DeepThought

{

		public	class	UltimateQuestion

		{

				public	Task<Object>	GetAnswer(object	input)	{

						var	result	=	new

						{

								description	=

										"Answer	to	The	Ultimate	Question	of	"	+	input,

								value	=	42

						};

						return	Task.FromResult<object>(result);

				}

		}

}

We	can	use	it	from	JavaScript	as	follows	(after	running	npm	install	edge):

'use	strict';

const	edge	=	require('edge');

let	getAnswer	=	edge.func({

				assemblyFile:	'bin\\Debug\\DeepThought.dll',

				typeName:	'DeepThought.UltimateQuestion',

				methodName:	'GetAnswer'

});

getAnswer('Life,	the	Universe,	and	Everything',	(error,	result)	=>	{

https://docs.asp.net/en/latest/client-side/index.html
https://github.com/tjanczuk/edge

				console.log(result);

});

Compiling	our	C#	code	and	running	our	JavaScript	file	results	in	the	following	output:

>	node	index.js

>	{	description:	'Answer	to	The	Ultimate	Question	of	Life,	the	Universe,	and	

Everything',	value:	42	}

You	can	find	a	good	introduction	to	Edge.js	at
http://www.hanselman.com/blog/ItsJustASoftwareIssueEdgejsBringsNodeAndNETTogetherOnThreePlatforms.aspx

Finally,	recall	that	the	OWIN	standard	and	ASP.NET	middleware	are	quite	similar	to	the
corresponding	concepts	in	JavaScript.	Edge.js	makes	it	easy	to	include	a	.NET	OWIN	application
as	middleware	in	a	Node.js	Express	application.	See	the	connect-owin	project	at
https://github.com/bbaia/connect-owin	for	details.

http://www.hanselman.com/blog/ItsJustASoftwareIssueEdgejsBringsNodeAndNETTogetherOnThreePlatforms.aspx
https://github.com/bbaia/connect-owin

Summary
In	this	chapter,	we	have	seen	how	Node.js	and	JavaScript's	new	release	cycles	bring	stability	to
the	platform.	We	have	introduced	some	of	the	new	and	upcoming	features	of	JavaScript.	We	have
explored	current	and	future	alternative	languages	for	the	JavaScript	environment.	We	have	seen
some	of	the	commonalities	between	.NET	and	Node.js	and	how	to	use	these	technologies
together.

I	hope	this	book	has	allowed	you	to	get	up-and-running	with	Node.js	and	given	you	an	appetite	to
learn	more.	The	resources	in	this	chapter	will	help	you	take	the	next	step	on	your	journey	with
JavaScript	and	Node.js.

Index
A

adapter	pattern	/	Using	Redis	as	a	backend
afterEach	hook

about	/	Resetting	state	between	tests
aggregation	pipeline

about	/	Using	the	MongoDB	shell
Ajax

used,	for	communication	/	Communicating	via	Ajax
alternative	session	stores

using	/	Using	alternative	session	stores
AMD

about	/	JavaScript	module	systems
AMD	modules

using,	with	RequireJS	/	Using	AMD	modules	with	RequireJS
app.js	file	/	Exploring	our	Express	application
application

executing,	locally	with	Heroku	/	Running	an	application	locally	with	Heroku
deploying,	with	Heroku	/	Deploying	an	application	to	Heroku

application	framework
using	/	Using	an	application	framework
Express,	using	/	Getting	started	with	Express

array	literal	notation
about	/	Functional	programming	in	JavaScript

asm.js
about	/	Understanding	asm.js
URL	/	Understanding	asm.js

ASP.NET
and	JavaScript	/	JavaScript	and	ASP.NET
.NET	Core	/	Exploring	.NET	Core
integration,	with	JavaScript	/	Integration	with	JavaScript
server-side	JavaScript	integration	/	Server-side	JavaScript	integration	with	.NET

assembly	language
about	/	Introducing	a	true	assembly	language	for	the	web
asm.js	/	Understanding	asm.js
WebAssembly	/	Understanding	WebAssembly

assertions
writing,	with	Chai	/	Using	Chai	for	assertions

asynchronous	code
callback	pattern,	using	/	Using	the	callback	pattern	for	asynchronous	code
writing,	promises	used	/	Writing	cleaner	asynchronous	code	using	promises
promise-based	asynchronous	code,	implementing	/	Implementing	promise-based

asynchronous	code
operations,	parallelizing	with	promises	/	Parallelising	operations	using	promises

asynchronous	interfaces
consuming	/	Consuming	asynchronous	interfaces

Asynchronous	Module	Definition	(AMD)	/	Writing	universal	modules
asynchronous	programming

about	/	Non-blocking
asynchronous	programming	patterns

combining	/	Combining	asynchronous	programming	patterns
asynchronous	tests

writing,	in	Mocha	/	Testing	an	Express	application
Atom

URL	/	Choosing	an	editor

B
BDD-style	tests

writing,	with	Mocha	/	Writing	BDD-style	tests	with	Mocha
state,	resetting	/	Resetting	state	between	tests

beforeEach	hook
about	/	Resetting	state	between	tests

behavior-driven	development	(BDD)	style
about	/	Writing	BDD-style	tests	with	Mocha

bin/www	file	/	Exploring	our	Express	application
binary	JSON	(BSON)

about	/	Introducing	MongoDB
browser

Node.js	modules,	using	/	Using	Node.js	modules	in	the	browser
Browserify

URL	/	Using	Node.js	modules	in	the	browser,	Controlling	Browserify's	output
output,	controlling	/	Controlling	Browserify's	output

build	process
automating,	with	Gulp	/	Automating	the	build	process	with	Gulp
tests,	executing	with	Gulp	/	Running	tests	using	Gulp

C
callback	function

about	/	Non-blocking
callback	pattern

using,	asynchronous	code	/	Using	the	callback	pattern	for	asynchronous	code
exposing	/	Exposing	the	callback	pattern
asynchronous	interfaces,	consuming	/	Consuming	asynchronous	interfaces

Chai
used,	for	assertions	/	Using	Chai	for	assertions
URL	/	Using	Chai	for	assertions

chat	room
implementing,	Socket.IO	used	/	Implementing	a	chat	room	with	Socket.IO

class-based	inheritance
about	/	Class-based	inheritance

classes
avoiding,	in	object-oriented	programming	/	Programming	without	classes
objects,	creating	with	new	keyword	/	Creating	objects	with	the	new	keyword
used,	in	object-oriented	programming	/	Programming	with	classes
class-based	inheritance	/	Class-based	inheritance

client-side	JavaScript
reference	link	/	Integration	with	JavaScript

Clojure
URL	/	And	beyond...

codebase
organizing	/	Organizing	your	codebase
JavaScript	module	systems	/	JavaScript	module	systems

code	coverage	statistics
gathering	/	Gathering	code	coverage	statistics

code	style
checking,	with	ESLint	/	Checking	code	style	with	ESLint

CoffeeScript
about	/	CoffeeScript

collections
about	/	Introducing	MongoDB

CommonJS
about	/	JavaScript	module	systems

compile-to-JavaScript	languages
about	/	Exploring	compile-to-JavaScript	languages
TypeScript	/	TypeScript
CoffeeScript	/	CoffeeScript

connect-owin	project
URL	/	Server-side	JavaScript	integration	with	.NET

const	keyword

about	/	Strict	mode
Continuous	Integration	(CI)

about	/	Setting	up	an	integration	server
Cookie	Choices

URL	/	Deciding	when	the	session	gets	saved

D
Dart

URL	/	And	beyond...
database	integration	tests

executing,	on	Travis	CI	/	Running	database	integration	tests	on	Travis	CI
data	operations

implementing	/	Implementing	other	data	operations
data,	listing	in	views	/	Listing	data	in	views
delete	request,	issuing	from	client	/	Issuing	a	delete	request	from	the	client
Express	views,	splitting	up	/	Splitting	up	Express	views	using	partials

Denial	of	Service	(DoS)	attack	/	Running	automated	clients	on	the	web
dependencies

managing,	in	.NET	Core	/	Managing	dependencies	in	.NET	Core
dependency	injection	(DI)

in	Node.js	/	Dependency	injection	in	Node.js
development	dependency

about	/	Writing	BDD-style	tests	with	Mocha
directory-level	module

defining	/	Defining	a	directory-level	module
document-oriented	DBMS

about	/	Introducing	MongoDB
Document	Object	Model	(DOM)

about	/	What	is	Node.js?

E
ECMAScript

versioning	/	Understanding	ECMAScript	versioning
ECMAScript	2015

exploring	/	Exploring	ECMAScript	2015
URL	/	Exploring	ECMAScript	2015
ES2015	modules	/	Understanding	ES2015	modules
generator	functions	/	Introducing	generators

ECMAScript	2016
about	/	Introducing	ECMAScript	2016

Edge.js
URL	/	Server-side	JavaScript	integration	with	.NET

Edge.js	project
URL	/	Server-side	JavaScript	integration	with	.NET

editor
selecting	/	Choosing	an	editor

encrypted	environment	variable
setting	up	/	Setting	encrypted	Travis	CI	environment	variables
Ruby,	installing	/	Installing	Ruby
creating	/	Creating	an	encrypted	environment	variable

ES2015	modules
about	/	Understanding	ES2015	modules
URL	/	Understanding	ES2015	modules
syntax	improvements,	using	/	Using	syntax	improvements	from	ES2015
for...	of	loop	/	The	for...	of	loop
spread	operator	/	The	spread	operator	and	rest	parameters
rest	parameters	/	The	spread	operator	and	rest	parameters
assignment,	destructuring	/	Destructuring	assignment

ESLint
code	style,	checking	with	/	Checking	code	style	with	ESLint
issues,	fixing	automatically	/	Automatically	fixing	issues	in	ESLint
URL,	for	rules	/	Automatically	fixing	issues	in	ESLint
executing,	from	Gulp	/	Running	ESLint	from	Gulp

event-driven	execution	model
about	/	Event-driven

event	loop
about	/	Event-driven

execution	model,	Node.js
about	/	Understanding	the	Node.js	execution	model
non-blocking	/	Non-blocking
event-driven	/	Event-driven
single-threaded	/	Single-threaded

Express

using	/	Getting	started	with	Express
routes	/	Understanding	Express	routes	and	views
views	/	Understanding	Express	routes	and	views
nodemon,	using	/	Using	nodemon	for	automatic	restarts
modular	applications,	creating	/	Creating	modular	applications	with	Express
middleware	/	Understanding	Express	middleware
MongoDB,	using	with	/	Using	MongoDB	with	Express
Socket.IO,	integrating	/	Integrating	Socket.IO	with	Express

Express	application
exploring	/	Exploring	our	Express	application
bootstrapping	/	Bootstrapping	an	Express	application
testing	/	Testing	an	Express	application
tests,	simplifying	with	SuperAgent	/	Simplifying	tests	using	SuperAgent

Express	application,	folders
node_modules	/	Exploring	our	Express	application
public	/	Exploring	our	Express	application
routes	/	Exploring	our	Express	application
views	/	Exploring	our	Express	application

Express	middleware	module
implementing	/	Implementing	an	Express	middleware	module

Express	sessions
using	/	Using	Express	sessions
session	secret,	specifying	/	Specifying	a	session	secret
session,	saving	/	Deciding	when	the	session	gets	saved
alternative	session	stores,	using	/	Using	alternative	session	stores
session	middleware,	using	/	Using	session	middleware

Express	views
splitting	up,	with	partials	/	Splitting	up	Express	views	using	partials

F
Facebook	application

URL	/	Adding	other	login	providers
for...	of	loop

about	/	The	for...	of	loop
full-stack	testing

with	PhantomJS	/	Full-stack	testing	with	PhantomJS
functional	object-oriented	programming

about	/	Functional	object-oriented	programming
JavaScript	/	Functional	programming	in	JavaScript
object-oriented	programming	/	Object-oriented	programming	in	JavaScript

G
Gem

about	/	Creating	an	encrypted	environment	variable
generator	functions

about	/	Introducing	generators
reference	link	/	Introducing	generators

GitHub
URL	/	Setting	up	a	public	GitHub	repository,	Building	a	project	on	Travis	CI

governance	model
URL	/	A	brief	history	of	Node.js

Gulp
build	process,	automating	/	Automating	the	build	process	with	Gulp
tests,	executing	/	Running	tests	using	Gulp
ESLint,	executing	from	/	Running	ESLint	from	Gulp
integration	tests,	executing	/	Running	integration	tests	from	Gulp

H
Hangman

URL	/	Handling	user-submitted	data
user-submitted	data,	handling	/	Handling	user-submitted	data
communicating,	via	Ajax	/	Communicating	via	Ajax
data	operations,	implementing	/	Implementing	other	data	operations

hashes
about	/	Storing	structured	data	in	Redis

Heroku
about	/	Working	with	Heroku
URL	/	Working	with	Heroku
account,	setting	up	/	Setting	up	a	Heroku	account	and	tooling
application,	executing	/	Running	an	application	locally	with	Heroku
application,	deploying	/	Deploying	an	application	to	Heroku
MongoDB,	setting	up	/	Setting	up	MongoDB
Redis,	setting	up	/	Setting	up	Redis

Heroku	config
working	with	/	Working	with	Heroku	logs,	config,	and	services

Heroku	logs
working	with	/	Working	with	Heroku	logs,	config,	and	services

Heroku	services
working	with	/	Working	with	Heroku	logs,	config,	and	services

heroku	toolbelt
URL	/	Setting	up	a	Heroku	account	and	tooling

higher-order	functions
about	/	Functional	programming	in	JavaScript

I
Immediately-Invoked	Function	Expression	(IIFE)	/	Supporting	the	browser	environment
integration	server

about	/	Setting	up	an	integration	server
setting	up	/	Setting	up	an	integration	server
public	GitHub	repository,	setting	up	/	Setting	up	a	public	GitHub	repository
project,	building	on	Travis	CI	/	Building	a	project	on	Travis	CI

integration	tests
executing,	from	Gulp	/	Running	integration	tests	from	Gulp

io.js
about	/	A	brief	history	of	Node.js

Isomorphic	JavaScript
URL	/	Isomorphic	JavaScript

J
Jasmine

about	/	Writing	BDD-style	tests	with	Mocha
JavaScript

about	/	Why	JavaScript?,	JavaScript
canvas	/	A	clear	canvas
functions	/	Functional	nature
future	/	A	bright	future
functional	programming	/	Functional	programming	in	JavaScript
scopes	/	Understanding	scopes	in	JavaScript
object-oriented	programming	/	Object-oriented	programming	in	JavaScript
exploring	/	Going	beyond	JavaScript
reference	link	/	Going	beyond	JavaScript
compile-to-JavaScript	languages	/	Exploring	compile-to-JavaScript	languages
assembly	language	/	Introducing	a	true	assembly	language	for	the	web
and	ASP.NET	/	JavaScript	and	ASP.NET
ASP.NET	integration	/	Integration	with	JavaScript

JavaScript	module	systems
about	/	JavaScript	module	systems

JavaScript	primitive	types
about	/	JavaScript	primitive	types

JavaScript	types
about	/	Introducing	JavaScript	types
primitive	types	/	JavaScript	primitive	types

K
key-value	data	store

about	/	Introducing	Redis

L
Language-Integrated	Query	(LINQ)

about	/	Functional	programming	in	JavaScript
let	keyword

about	/	Strict	mode
lists

about	/	Storing	structured	data	in	Redis
login	providers

adding	/	Adding	other	login	providers
long-polling	/	Understanding	options	for	real-time	communication
long-term	support	(LTS)

about	/	Introducing	the	Node.js	LTS	schedule
LTS	schedule

about	/	Introducing	the	Node.js	LTS	schedule
URL	/	Introducing	the	Node.js	LTS	schedule

M
Map-Reduce

about	/	Using	the	MongoDB	shell
URL	/	Using	the	MongoDB	shell

middleware
about	/	Building	web	applications	in	ASP.NET	Core
URL	/	Building	web	applications	in	ASP.NET	Core

middleware,	Express
about	/	Understanding	Express	middleware
error	handling,	implementing	/	Implementing	error	handling
using	/	Using	Express	middleware

Mocha
BDD-style	tests,	writing	/	Writing	BDD-style	tests	with	Mocha
about	/	Writing	BDD-style	tests	with	Mocha
asynchronous	tests,	writing	/	Testing	an	Express	application

Mockgoose
about	/	Providing	dependencies

mocks
about	/	Creating	test	doubles	using	Sinon.JS

model
about	/	Persisting	objects	with	Mongoose

modular	applications
creating,	with	Express	/	Creating	modular	applications	with	Express

module	counts
reference	link	/	Introducing	the	Node.js	ecosystem

modules
about	/	Organizing	your	codebase
creating	/	Creating	modules	in	Node.js
declaring,	with	name	/	Declaring	a	module	with	a	name	and	its	own	scope
declaring,	with	scope	/	Declaring	a	module	with	a	name	and	its	own	scope
functionality,	defining	/	Defining	functionality	provided	by	the	module
importing,	into	another	script	/	Importing	a	module	into	another	script
directory-level	module,	defining	/	Defining	a	directory-level	module
Express	middleware	module,	implementing	/	Implementing	an	Express	middleware
module

Modulus
URL	/	Further	resources

MongoDB
about	/	Introducing	MongoDB
advantages	/	Why	choose	MongoDB?
object	modelling	/	Object	modeling
JavaScript	/	JavaScript
scalability	/	Scalability

URL	/	Getting	started	with	MongoDB
URL,	for	installation	/	Getting	started	with	MongoDB
directory,	creating	/	Getting	started	with	MongoDB
shell,	using	/	Using	the	MongoDB	shell
URL,	for	documentation	/	Using	the	MongoDB	shell
using,	with	Express	/	Using	MongoDB	with	Express
objects,	persisting	with	Mongoose	/	Persisting	objects	with	Mongoose
persistence	code,	isolating	/	Isolating	persistence	code
dependency	injection	(DI),	in	Node.js	/	Dependency	injection	in	Node.js
dependencies,	providing	/	Providing	dependencies
database	integration	tests,	executing	/	Running	database	integration	tests	on	Travis	CI
setting	up	/	Setting	up	MongoDB

Mongoose
about	/	Using	MongoDB	with	Express
objects,	persisting	/	Persisting	objects	with	Mongoose

Mustache
URL	/	Understanding	Express	routes	and	views

N
.NET	Core

about	/	Exploring	.NET	Core
project	structure,	defining	/	Defining	project	structure	in	.NET	Core
dependencies,	managing	/	Managing	dependencies	in	.NET	Core
web	applications,	building	/	Building	web	applications	in	ASP.NET	Core

N4JS
URL	/	TypeScript

namespaces
used,	for	organizing	Socket.IO	applications	/	Organizing	Socket.IO	applications	using
namespaces

new	keyword
used,	for	creating	objects	/	Creating	objects	with	the	new	keyword

Node.js
about	/	What	is	Node.js?
ecosystem	/	Introducing	the	Node.js	ecosystem
usage	/	When	to	use	Node.js
web	applications,	writing	/	Writing	web	applications
use	cases	/	Identifying	other	use	cases
need	for	/	Why	now?
URL	/	Installing	and	running	Node.js
installing	/	Installing	and	running	Node.js
running	/	Installing	and	running	Node.js
dependency	injection	(DI)	/	Dependency	injection	in	Node.js
Redis,	using	/	Using	Redis	from	Node.js
and	RequireJS,	comparing	/	Comparing	Node.js	and	RequireJS
versioning	/	Understanding	Node.js	versioning
history	/	A	brief	history	of	Node.js
LTS	schedule	/	Introducing	the	Node.js	LTS	schedule

Node.js	modules
using,	in	browser	/	Using	Node.js	modules	in	the	browser
Browserify	output,	controlling	/	Controlling	Browserify's	output

nodemon
using	/	Using	nodemon	for	automatic	restarts

non-blocking	execution	model
about	/	Non-blocking

npm
about	/	Introducing	the	Node.js	ecosystem
package,	publishing	/	Publishing	a	package	to	npm

npm	command	line	tool
about	/	Introducing	the	Node.js	ecosystem

npm	packages
writing	/	Writing	npm	packages

defining	/	Defining	an	npm	package
standalone	tool,	releasing	/	Releasing	a	standalone	tool	to	npm

npm	registry
about	/	Introducing	the	Node.js	ecosystem

NuGet	package	manager
about	/	Managing	dependencies	in	.NET	Core

Null	type
about	/	JavaScript	primitive	types

number
about	/	JavaScript	primitive	types

O
object

about	/	Object-oriented	programming	in	JavaScript
object-oriented	(OO)

about	/	Why	JavaScript?
object-oriented	programming

in	JavaScript	/	Object-oriented	programming	in	JavaScript
without	classes	/	Programming	without	classes
with	classes	/	Programming	with	classes

Object-Relational	Mapper	(ORM)
about	/	Object	modeling

object	modelling
about	/	Object	modeling

objects
creating,	with	new	keyword	/	Creating	objects	with	the	new	keyword

OmniSharp	project
URL	/	Defining	project	structure	in	.NET	Core

OpenID	Connect
URL	/	Adding	other	login	providers

OWIN
about	/	Building	web	applications	in	ASP.NET	Core
URL	/	Building	web	applications	in	ASP.NET	Core

P
package

publishing,	to	npm	/	Publishing	a	package	to	npm
automated	clients,	running	on	web	/	Running	automated	clients	on	the	web
standalone	tool,	releasing	to	npm	/	Releasing	a	standalone	tool	to	npm

package.json	file	/	Exploring	our	Express	application
Passport

about	/	Introducing	Passport
authentication	strategy,	selecting	/	Choosing	an	authentication	strategy
third-party	authentication	/	Understanding	third-party	authentication
configuring	/	Configuring	Passport
configuring,	with	persistence	/	Configuring	Passport	with	persistence
integration	testing	/	Integration	testing	with	Passport

PhantomJS
full-stack	testing	/	Full-stack	testing	with	PhantomJS
about	/	Full-stack	testing	with	PhantomJS

pipeline	stages
about	/	Using	the	MongoDB	shell

Platform-as-a-Service	(PaaS)	/	Further	resources
Procfile

about	/	Running	an	application	locally	with	Heroku
promise-based	asynchronous	code

implementing	/	Implementing	promise-based	asynchronous	code
consuming	/	Consuming	the	promise	pattern

Promise.coroutine	method
URL	/	Introducing	generators

promises
used,	for	writing	asynchronous	code	/	Writing	cleaner	asynchronous	code	using
promises
about	/	Writing	cleaner	asynchronous	code	using	promises
pending	states	/	Writing	cleaner	asynchronous	code	using	promises
fulfilled	states	/	Writing	cleaner	asynchronous	code	using	promises
rejected	states	/	Writing	cleaner	asynchronous	code	using	promises
used,	for	parallelizing	operations	/	Parallelising	operations	using	promises

Promises/A+
URL	/	Combining	asynchronous	programming	patterns

prototypal	inheritance
about	/	Programming	without	classes

prototype
about	/	Programming	without	classes

public	GitHub	repository
setting	up	/	Setting	up	a	public	GitHub	repository

R
Read-Eval-Print	Loop	(REPL)

about	/	What	is	Node.js?
real-time	communication

options	/	Understanding	options	for	real-time	communication
real-time	Node.js	applications

scaling	/	Scaling	real-time	Node.js	applications
Redis,	using	as	backend	/	Using	Redis	as	a	backend

Redis
about	/	Introducing	Redis
advantages	/	Why	use	Redis?
installing	/	Installing	Redis
URL	/	Installing	Redis
used,	as	key-value	store	/	Using	Redis	as	a	key-value	store
structured	data,	storing	/	Storing	structured	data	in	Redis
lists	/	Storing	structured	data	in	Redis
hashes	/	Storing	structured	data	in	Redis
sets	/	Storing	structured	data	in	Redis
sorted	sets	/	Storing	structured	data	in	Redis
user	ranking	system,	building	/	Building	a	user	ranking	system	with	Redis
using,	from	Node.js	/	Using	Redis	from	Node.js
setting	up	/	Setting	up	Redis
user	data,	persisting	/	Persisting	user	data	with	Redis

redis-js
used,	for	testing	/	Testing	with	redis-js

relational	property
about	/	Introducing	MongoDB

RequireJS
and	Node.js,	comparing	/	Comparing	Node.js	and	RequireJS

rest	parameters
about	/	The	spread	operator	and	rest	parameters

robots.txt	file
URL	/	Running	automated	clients	on	the	web

rooms
used,	for	partitioning	Socket.IO	clients	/	Partitioning	Socket.IO	clients	using	rooms

routes,	Express
about	/	Understanding	Express	routes	and	views

Ruby
installing	/	Installing	Ruby
URL	/	Installing	Ruby

RubyInstaller
URL	/	Installing	Ruby

S
schema

about	/	Persisting	objects	with	Mongoose
scopes,	JavaScript

about	/	Understanding	scopes	in	JavaScript
global	/	Understanding	scopes	in	JavaScript
functional	/	Understanding	scopes	in	JavaScript
strict	mode	/	Strict	mode

security
about	/	A	note	on	security
references	/	A	note	on	security

Semantic	Versioning	2.0.0
URL	/	A	brief	history	of	Node.js

server-side	JavaScript	integration
about	/	Server-side	JavaScript	integration	with	.NET

session	middleware
using	/	Using	session	middleware

sets
about	/	Storing	structured	data	in	Redis

single-threaded	execution	model
about	/	Single-threaded

Sinon.JS
used,	for	creating	test	doubles	/	Creating	test	doubles	using	Sinon.JS
URL	/	Creating	test	doubles	using	Sinon.JS

social	login
implementing	/	Implementing	social	login
Twitter	application,	setting	up	/	Setting	up	a	Twitter	application
Passport,	configuring	/	Configuring	Passport
user	data,	persisting	with	Redis	/	Persisting	user	data	with	Redis
Passport,	configuring	with	persistence	/	Configuring	Passport	with	persistence
functionality,	hiding	from	unauthenticated	users	/	Hiding	functionality	from
unauthenticated	users
integration	testing,	with	Passport	/	Integration	testing	with	Passport

Socket.IO
about	/	Introducing	Socket.IO
chat	room,	implementing	/	Implementing	a	chat	room	with	Socket.IO
integrating,	with	Express	/	Integrating	Socket.IO	with	Express
messages,	directing	/	Directing	Socket.IO	messages
applications,	testing	/	Testing	Socket.IO	applications

Socket.IO	applications,	organizing
about	/	Organizing	Socket.IO	applications
real-time	updates,	exposing	to	model	/	Exposing	real-time	updates	to	the	model
namespaces	used	/	Organizing	Socket.IO	applications	using	namespaces

Socket.IO	clients	partitioning,	rooms	used	/	Partitioning	Socket.IO	clients	using	rooms
sorted	sets

about	/	Storing	structured	data	in	Redis
spies

about	/	Creating	test	doubles	using	Sinon.JS
spread	operator

about	/	The	spread	operator	and	rest	parameters
spy

about	/	Creating	test	doubles
strict	mock

about	/	Creating	test	doubles	using	Sinon.JS
strict	mode

about	/	Strict	mode
strings

about	/	JavaScript	primitive	types
Strings

about	/	Using	Redis	as	a	key-value	store
stubs

about	/	Creating	test	doubles	using	Sinon.JS
SuperAgent

tests,	simplifying	with	/	Simplifying	tests	using	SuperAgent
URL	/	Simplifying	tests	using	SuperAgent

SuperTest
URL	/	Simplifying	tests	using	SuperAgent

T
table	of	contents	(ToC)	/	Writing	npm	packages
templating	engines

about	/	Getting	started	with	Express
test	doubles

creating	/	Creating	test	doubles
about	/	Creating	test	doubles
creating,	Sinon.JS	used	/	Creating	test	doubles	using	Sinon.JS

tests
writing	/	Writing	a	simple	test	in	Node.js
codebase,	structuring	/	Structuring	the	codebase	for	tests
simplifying,	with	SuperAgent	/	Simplifying	tests	using	SuperAgent

Travis	CI
URL	/	Setting	up	an	integration	server,	Building	a	project	on	Travis	CI
using	/	Setting	up	an	integration	server
project,	building	/	Building	a	project	on	Travis	CI
database	integration	tests,	executing	/	Running	database	integration	tests	on	Travis	CI
used,	for	deploying	/	Deploying	from	Travis	CI
encrypted	environment	variable,	setting	up	/	Setting	encrypted	Travis	CI	environment
variables

Twelve-Factor	App
URL	/	Further	resources

Twitter
URL	/	Setting	up	a	Twitter	application

Twitter	application
setting	up	/	Setting	up	a	Twitter	application

type	definitions
reference	link	/	TypeScript

TypeScript
about	/	TypeScript
URL	/	TypeScript

U
Undefined	type

about	/	JavaScript	primitive	types
universal	modules

writing	/	Writing	universal	modules
Node.js	and	RequireJS,	comparing	/	Comparing	Node.js	and	RequireJS
browser	environment,	supporting	/	Supporting	the	browser	environment
AMD	modules,	using	with	RequireJS	/	Using	AMD	modules	with	RequireJS
isomorphic	JavaScript	/	Isomorphic	JavaScript

user-submitted	data
handling	/	Handling	user-submitted	data

user	ranking	system
building,	with	Redis	/	Building	a	user	ranking	system	with	Redis
user	rankings,	implementing	/	Implementing	user	rankings	with	Redis
users	service,	using	/	Making	use	of	the	users	service

users
allowing,	to	log	out	/	Allowing	users	to	log	out

V
variable	hoisting

about	/	Understanding	scopes	in	JavaScript
verify	callback

about	/	Configuring	Passport
views,	Express

about	/	Understanding	Express	routes	and	views
Visual	Studio	Code

URL	/	Choosing	an	editor

W
web	applications

writing,	with	Node.js	/	Writing	web	applications
building,	in	.NET	Core	/	Building	web	applications	in	ASP.NET	Core

WebAssembly
URL	/	Understanding	WebAssembly
about	/	Understanding	WebAssembly

Wercker
URL	/	Further	resources

	Learning Node.js for .NET Developers
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Why Node.js?
	What is Node.js?
	Understanding the Node.js execution model
	Non-blocking
	Event-driven
	Single-threaded
	Introducing the Node.js ecosystem
	Why JavaScript?
	A clear canvas
	Functional nature
	A bright future
	When to use Node.js
	Writing web applications
	Identifying other use cases
	Why now?
	Summary
	2. Getting Started with Node.js
	Installing and running Node.js
	Choosing an editor
	Using an application framework
	Getting started with Express
	Exploring our Express application
	Understanding Express routes and views
	Using nodemon for automatic restarts
	Creating modular applications with Express
	Bootstrapping an Express application
	Understanding Express middleware
	Implementing error handling
	Using Express middleware
	Summary
	3. A JavaScript Primer
	Introducing JavaScript types
	JavaScript primitive types
	Functional object-oriented programming
	Functional programming in JavaScript
	Understanding scopes in JavaScript
	Strict mode
	Object-oriented programming in JavaScript
	Programming without classes
	Creating objects with the new keyword
	Programming with classes
	Class-based inheritance
	Summary
	4. Introducing Node.js Modules
	Organizing your codebase
	JavaScript module systems
	Creating modules in Node.js
	Declaring a module with a name and its own scope
	Defining functionality provided by the module
	Importing a module into another script
	Defining a directory-level module
	Implementing an Express middleware module
	Summary
	5. Creating Dynamic Websites
	Handling user-submitted data
	Communicating via Ajax
	Implementing other data operations
	Listing data in views
	Issuing a delete request from the client
	Splitting up Express views using partials
	Summary
	6. Testing Node.js Applications
	Writing a simple test in Node.js
	Structuring the codebase for tests
	Writing BDD-style tests with Mocha
	Resetting state between tests
	Using Chai for assertions
	Creating test doubles
	Creating test doubles using Sinon.JS
	Testing an Express application
	Simplifying tests using SuperAgent
	Full-stack testing with PhantomJS
	Summary
	7. Setting up an Automated Build
	Setting up an integration server
	Setting up a public GitHub repository
	Building a project on Travis CI
	Automating the build process with Gulp
	Running tests using Gulp
	Checking code style with ESLint
	Automatically fixing issues in ESLint
	Running ESLint from Gulp
	Gathering code coverage statistics
	Running integration tests from Gulp
	Summary
	8. Mastering Asynchronicity
	Using the callback pattern for asynchronous code
	Exposing the callback pattern
	Consuming asynchronous interfaces
	Writing cleaner asynchronous code using promises
	Implementing promise-based asynchronous code
	Consuming the promise pattern
	Parallelising operations using promises
	Combining asynchronous programming patterns
	Summary
	9. Persisting Data
	Introducing MongoDB
	Why choose MongoDB?
	Object modeling
	JavaScript
	Scalability
	Getting started with MongoDB
	Using the MongoDB shell
	Using MongoDB with Express
	Persisting objects with Mongoose
	Isolating persistence code
	Dependency injection in Node.js
	Providing dependencies
	Running database integration tests on Travis CI
	Introducing Redis
	Why use Redis?
	Installing Redis
	Using Redis as a key-value store
	Storing structured data in Redis
	Building a user ranking system with Redis
	Using Redis from Node.js
	Testing with redis-js
	Implementing user rankings with Redis
	Making use of the users service
	A note on security
	Summary
	10. Creating Real-time Web Apps
	Understanding options for real-time communication
	Introducing Socket.IO
	Implementing a chat room with Socket.IO
	Scaling real-time Node.js applications
	Using Redis as a backend
	Integrating Socket.IO with Express
	Directing Socket.IO messages
	Testing Socket.IO applications
	Organizing Socket.IO applications
	Exposing real-time updates to the model
	Organizing Socket.IO applications using namespaces
	Partitioning Socket.IO clients using rooms
	Summary
	11. Deploying Node.js Applications
	Working with Heroku
	Setting up a Heroku account and tooling
	Running an application locally with Heroku
	Deploying an application to Heroku
	Working with Heroku logs, config, and services
	Setting up MongoDB
	Setting up Redis
	Deploying from Travis CI
	Setting encrypted Travis CI environment variables
	Installing Ruby
	Creating an encrypted environment variable
	Further resources
	Summary
	12. Authentication in Node.js
	Introducing Passport
	Choosing an authentication strategy
	Understanding third-party authentication
	Using Express sessions
	Specifying a session secret
	Deciding when the session gets saved
	Using alternative session stores
	Using session middleware
	Implementing social login
	Setting up a Twitter application
	Configuring Passport
	Persisting user data with Redis
	Configuring Passport with persistence
	Hiding functionality from unauthenticated users
	Integration testing with Passport
	Allowing users to log out
	Adding other login providers
	Summary
	13. Creating JavaScript Packages
	Writing universal modules
	Comparing Node.js and RequireJS
	Supporting the browser environment
	Using AMD modules with RequireJS
	Isomorphic JavaScript
	Writing npm packages
	Defining an npm package
	Publishing a package to npm
	Running automated clients on the web
	Releasing a standalone tool to npm
	Using Node.js modules in the browser
	Controlling Browserify's output
	Summary
	14. Node.js and Beyond
	Understanding Node.js versioning
	A brief history of Node.js
	Introducing the Node.js LTS schedule
	Understanding ECMAScript versioning
	Exploring ECMAScript 2015
	Understanding ES2015 modules
	Using syntax improvements from ES2015
	The for... of loop
	The spread operator and rest parameters
	Destructuring assignment
	Introducing generators
	Introducing ECMAScript 2016
	Going beyond JavaScript
	Exploring compile-to-JavaScript languages
	TypeScript
	CoffeeScript
	And beyond...
	Introducing a true assembly language for the web
	Understanding asm.js
	Understanding WebAssembly
	JavaScript and ASP.NET
	Exploring .NET Core
	Defining project structure in .NET Core
	Managing dependencies in .NET Core
	Building web applications in ASP.NET Core
	Integration with JavaScript
	Server-side JavaScript integration with .NET
	Summary
	Index

